首页> 外文期刊>IEEE transactions on information forensics and security >Audio Steganography Based on Iterative Adversarial Attacks Against Convolutional Neural Networks
【24h】

Audio Steganography Based on Iterative Adversarial Attacks Against Convolutional Neural Networks

机译:基于对卷积神经网络的迭代对抗攻击的音频隐写术

获取原文
获取原文并翻译 | 示例

摘要

Recently, convolutional neural networks (CNNs) have demonstrated superior performance on digital multimedia steganalysis. However, some studies have noted that most CNN-based classifiers can be easily fooled by adversarial examples, which form slightly perturbed inputs to a target network according to the gradients. Inspired by this phenomenon, we first introduce a novel steganography method based on adversarial examples for digital audio in the time domain. Unlike related methods for image steganography, such as which are highly dependent on some existing embedding costs, the proposed method can start from a flat or even a random embedding cost and then iteratively update the initial costs by exploiting the adversarial attacks until satisfactory security performances are obtained. The extensive experimental results show that our method significantly outperforms the existing nonadaptive and adaptive steganography methods and achieves state-of-the-art results. Moreover, we also provide experimental results to investigate why the proposed embedding modifications seem evenly located at all audio segments despite their different content complexities, which is contrary to the content adaptive principle widely employed in modern steganography methods.
机译:最近,卷积神经网络(CNN)在数字多媒体隐写分析方面已显示出优异的性能。但是,一些研究指出,大多数基于CNN的分类器很容易被对抗性示例所愚弄,这些对抗性示例会根据梯度形成对目标网络的微扰输入。受此现象的启发,我们首先引入一种新的隐写方法,该方法基于时域中数字音频的对抗示例。与图像隐写术的相关方法(例如高度依赖于某些现有的嵌入成本)不同,所提出的方法可以从固定甚至随机的嵌入成本开始,然后通过利用对抗性攻击迭代更新初始成本,直到获得令人满意的安全性能为止。获得。广泛的实验结果表明,我们的方法显着优于现有的非自适应和自适应隐写方法,并达到了最新的结果。此外,我们还提供了实验结果,以研究为何所提出的嵌入修改尽管内容复杂度不同,却在所有音频段上看起来均匀分布,这与现代隐写术方法中广泛采用的内容自适应原理相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号