首页> 外文期刊>IEEE Transactions on Image Processing >Improvement on performance of modified Hopfield neural network for image restoration
【24h】

Improvement on performance of modified Hopfield neural network for image restoration

机译:改进的Hopfield神经网络用于图像复原的性能改进

获取原文
获取原文并翻译 | 示例

摘要

By analyzing the same inequality /spl par/u*/spl par//sub 1//spl les/ 1/2 trace(T), the authors conclude that a severely blurred image is generally restored less accurately than a mildly blurred one by the modified Hopfield neural network. This conclusion is the opposite of the statement made in Paik and Katsaggelos (1992). The authors also propose an improved new algorithm. Simulation results show that the SNRs of the images restored by the algorithm are higher by 3 to 8 db than those restored by the algorithm in Paik and Katsaggelos and the streaks in the restored images are obviously suppressed by the algorithm.
机译:通过分析相同的不等式/ spl par / u * / spl par // sub 1 // spl les / 1/2 trace(T),作者得出的结论是,严重模糊的图像通常比轻微模糊的图像恢复得较不准确。改进的Hopfield神经网络。这个结论与Paik和Katsaggelos(1992)的说法相反。作者还提出了一种改进的新算法。仿真结果表明,在Paik和Katsaggelos中,该算法还原的图像的信噪比比该算法还原的图像的SNR高3到8 db,并且该算法明显抑制了还原图像中的条纹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号