首页> 外文期刊>IEEE Transactions on Signal Processing >Hopfield neural network based algorithms for image restoration and reconstruction. II. Performance analysis
【24h】

Hopfield neural network based algorithms for image restoration and reconstruction. II. Performance analysis

机译:基于Hopfield神经网络的图像还原和重建算法。二。性能分析

获取原文
获取原文并翻译 | 示例

摘要

For pt. I see ibid., vol.48, no.7, p.2105-18 (2000). In this paper, we analyze four typical sequential Hopfield (1982) neural network (HNN) based algorithms for image restoration and reconstruction, which are the modified HNN (PK) algorithm, the HNN (ZCVJ) algorithm with energy checking, the eliminating-highest-error (EHE) algorithm, and the simulated annealing (SA) algorithm. A new measure, the correct transition probability (CTP), is proposed for the performance of iterative algorithms and is used in this analysis. The CTP measures the correct transition probability for a neuron transition at a particular time and reveals the insight of the performance at each iteration. The general properties of the CTP are discussed. Derived are the CTP formulas of these four algorithms. The analysis shows that the EHE algorithm has the highest CTP in all conditions of the severity of blurring, the signal-to-noise ratio (SNR) of a blurred noisy image, and the regularization term. This confirms the result in many previous simulations that the EHE algorithms can converge to more accurate images with much fewer iterations, have much higher correct transition rates than other HNN algorithms, and suppress streaks in restored images. The analysis also shows that the CTPs of all these algorithms decrease with the severity of blurring, the severity of noise, and the degree of regularization, which also confirms the results in previous simulations. This in return suggests that the correct transition probability be a rational performance measure.
机译:对于pt。我见同上,第48卷,第7期,第2105-18页(2000)。在本文中,我们分析了四种典型的基于顺序Hopfield(1982)神经网络(HNN)的图像恢复和重建算法,即改进的HNN(PK)算法,具有能量检查的HNN(ZCVJ)算法,消除最高错误(EHE)算法和模拟退火(SA)算法。针对迭代算法的性能,提出了一种新的度量,即正确的转移概率(CTP),该度量用于此分析中。 CTP为特定时间的神经元过渡测量正确的过渡概率,并揭示每次迭代的性能见解。讨论了CTP的一般属性。推导这四种算法的CTP公式。分析表明,在模糊严重性,噪声图像模糊的信噪比(SNR)和正则项的所有条件下,EHE算法均具有最高的CTP。这证实了以前的许多仿真结果,即EHE算法可以以更少的迭代次数收敛到更精确的图像,比其他HNN算法具有更高的正确转换率,并抑制恢复图像中的条纹。分析还表明,所有这些算法的CTP随模糊的严重程度,噪声的严重程度和正则化程度而降低,这也证实了先前模拟的结果。反过来,这表明正确的过渡概率是一种合理的性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号