首页> 外文期刊>IEEE Transactions on Image Processing >Estimating Gaussian Markov random field parameters in a nonstationary framework: application to remote sensing imaging
【24h】

Estimating Gaussian Markov random field parameters in a nonstationary framework: application to remote sensing imaging

机译:在非平稳框架中估计高斯马尔可夫随机场参数:在遥感成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the problem of estimating textural parameters. We do not consider the problem of texture synthesis, but the problem of extracting textural features for tasks such as image segmentation. We take into account nonstationarities occurring in the local mean. We focus on Gaussian Markov random fields for which two estimation methods are proposed, and applied in a nonstationary framework. The first one consists of extracting conditional probabilities and performing a least square approximation. This method is applied to a nonstationary framework, dealing with the piecewise constant local mean. This framework is adapted to practical tasks when discriminating several textures on a single image. The blurring effect affecting edges between two different textures is thus reduced. The second proposed method is based on renormalization theory. Statistics involved only concern variances of Gaussian laws, leading to Cramer-Rao estimators. This method is thus especially robust with respect to the size of sampling. Moreover, nonstationarities of the local mean do not affect results. We then demonstrate that the estimated parameters allow texture discrimination for remote sensing data. The first proposed estimation method is applied to extract urban areas from SPOT images. Since discontinuities of the local mean are taken into account, we obtain an accurate urban areas delineation. Finally, we apply the renormalization based on method to segment ice in polar regions from AVHRR data.
机译:在本文中,我们解决了估计纹理参数的问题。我们不考虑纹理合成的问题,而是考虑为诸如图像分割之类的任务提取纹理特征的问题。我们考虑了发生在局部均值中的非平稳性。我们关注于提出两种估计方法并在非平稳框架中应用的高斯马尔可夫随机场。第一个包括提取条件概率并执行最小二乘近似。该方法适用于非平稳框架,处理分段恒定局部均值。当区分单个图像上的多个纹理时,此框架适用于实际任务。因此减少了影响两个不同纹理之间的边缘的模糊效果。提出的第二种方法基于重归一化理论。涉及的统计仅涉及高斯定律的方差,从而导致Cramer-Rao估计量。因此,该方法在采样大小方面特别可靠。而且,局部均值的非平稳性不会影响结果。然后,我们证明了估计的参数允许对遥感数据进行纹理识别。首先提出的估计方法被应用于从SPOT图像中提取城市区域。由于考虑了当地均值的不连续性,我们获得了准确的市区划界。最后,我们应用基于方法的重归一化从AVHRR数据中分割极区中的冰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号