首页> 外文期刊>IEEE Transactions on Image Processing >On the relation of order-statistics filters and template matching: optimal morphological pattern recognition
【24h】

On the relation of order-statistics filters and template matching: optimal morphological pattern recognition

机译:关于顺序统计过滤器与模板匹配的关系:最佳形态学模式识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate methods for optimal morphological pattern recognition. The task of optimal pattern recognition is posed as a solution to a hypothesis testing problem. A minimum probability of error decision rule-maximum a posteriori filter-is sought. The classical solution to the minimum probability of error hypothesis testing problem, in the presence of independent and identically distributed noise degradation, is provided by template matching (TM). A modification of this task, seeking a solution to the minimum probability of error hypothesis testing problem, in the presence of composite (mixed) independent and identically distributed noise degradation, is demonstrated to be given by weighted composite template matching (WCTM). As a consequence of our investigation, the relationship of the order-statistics filter (OSF) and TM-in both the standard as well as the weighted and composite implementations-is established. This relationship is based on the thresholded cross-correlation representation of the OSF. The optimal order and weights of the OSF for pattern recognition are subsequently derived. An additional outcome of this representation is a fast method for the implementation of the OSF.
机译:在本文中,我们研究了最佳形态学模式识别方法。最佳模式识别的任务是解决假设检验问题的方法。寻求错误判定规则的最小概率-最大后验滤波器。模板匹配(TM)提供了在存在独立且均匀分布的噪声降级的情况下针对最小错误假设检验问题的经典解决方案。通过加权复合模板匹配(WCTM)可以证明,在存在复合(混合)独立且分布均匀的噪声降级的情况下,寻求该错误假设测试问题的最小可能性的解决方案,可以对此任务进行修改。作为我们调查的结果,在标准以及加权和复合实现中,建立了顺序统计过滤器(OSF)和TM的关系。此关系基于OSF的阈值互相关表示。随后得出用于模式识别的OSF的最佳顺序和权重。这种表示的另一个结果是实现OSF的快速方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号