首页> 外文期刊>IEEE Transactions on Image Processing >Bayesian algorithms for simultaneous structure from motion estimation of multiple independently moving objects
【24h】

Bayesian algorithms for simultaneous structure from motion estimation of multiple independently moving objects

机译:贝叶斯算法用于多个独立运动物体运动估计的同时结构

获取原文
获取原文并翻译 | 示例

摘要

The problem of simultaneous structure from motion estimation for multiple independently moving objects from a monocular image sequence is addressed. Two Bayesian algorithms are presented for solving this problem using the sequential importance sampling (SIS) technique. The empirical posterior distribution of object motion and feature separation parameters is approximated by weighted samples. The first algorithm addresses the problem when only two moving objects are present. A singular value decomposition (SVD)-based sample clustering algorithm is shown to be capable of separating samples related to different objects. A pair of SIS procedures is used to track the posterior distribution of the motion parameters. In the second algorithm, a balancing step is added into the SIS procedure to preserve samples of low weights so that all objects have enough samples to propagate empirical motion distributions. By using the proposed algorithms, the relative motions of all the moving objects with respect to the camera can be simultaneously estimated. Both algorithms have been tested on synthetic and real- image sequences. Improved results have been achieved.
机译:解决了来自单眼图像序列的多个独立运动物体的运动估计的同时结构问题。提出了两种贝叶斯算法,用于使用顺序重要性采样(SIS)技术解决此问题。对象运动和特征分离参数的经验后验分布通过加权样本进行近似。当仅存在两个运动物体时,第一种算法解决了该问题。基于奇异值分解(SVD)的样本聚类算法显示能够分离与不同对象相关的样本。一对SIS程序用于跟踪运动参数的后验分布。在第二种算法中,将平衡步骤添加到SIS程序中以保留低权重的样本,以便所有对象都有足够的样本来传播经验运动分布。通过使用提出的算法,可以同时估计所有运动对象相对于摄像机的相对运动。两种算法均已在合成和真实图像序列上进行了测试。取得了改进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号