首页> 外文期刊>IEEE Transactions on Image Processing >Efficient Entropy Estimation Based on Doubly Stochastic Models for Quantized Wavelet Image Data
【24h】

Efficient Entropy Estimation Based on Doubly Stochastic Models for Quantized Wavelet Image Data

机译:基于双随机模型的量化小波图像数据有效熵估计

获取原文
获取原文并翻译 | 示例

摘要

Under a rate constraint, wavelet-based image coding involves strategic discarding of information such that the remaining data can be described with a given amount of rate. In a practical coding system, this task requires knowledge of the relationship between quantization step size and compressed rate for each group of wavelet coefficients, the R-Q curve. A common approach to this problem is to fit each subband with a scalar probability distribution and compute entropy estimates based on the model. This approach is not effective at rates below 1.0 bits-per-pixel because the distributions of quantized data do not reflect the dependencies in coefficient magnitudes. These dependencies can be addressed with doubly stochastic models, which have been previously proposed to characterize more localized behavior, though there are tradeoffs between storage, computation time, and accuracy. Using a doubly stochastic generalized Gaussian model, it is demonstrated that the relationship between step size and rate is accurately described by a low degree polynomial in the logarithm of the step size. Based on this observation, an entropy estimation scheme is presented which offers an excellent tradeoff between speed and accuracy; after a simple data-gathering step, estimates are computed instantaneously by evaluating a single polynomial for each group of wavelet coefficients quantized with the same step size. These estimates are on average within 3% of a desired target rate for several of state-of-the-art coders
机译:在速率约束下,基于小波的图像编码涉及战略性地丢弃信息,以便可以以给定的速率描述剩余数据。在实际的编码系统中,此任务需要了解每组小波系数(R-Q曲线)的量化步长和压缩率之间的关系。解决此问题的常用方法是使每个子带具有标量概率分布,并根据该模型计算熵估计。该方法在低于每像素1.0位的速率时无效,因为量化数据的分布不能反映系数幅度的依赖性。这些依赖性可以通过双重随机模型来解决,尽管在存储,计算时间和准确性之间要进行权衡,但是先前已经提出了双重随机模型来表征更多的局部行为。使用双随机广义高斯模型,证明了步长和速率之间的关系可以通过步长对数中的低次多项式准确地描述。基于这种观察,提出了一种熵估计方案,该方案在速度和精度之间提供了很好的折衷方案。在简单的数据收集步骤之后,通过为以相同步长大小量化的每组小波系数评估单个多项式,即可立即计算估计值。这些估算值平均在几个最新编码人员的期望目标速率的3%之内

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号