首页> 外文期刊>IEEE Transactions on Signal Processing >An investigation of wavelet-based image coding using an entropy-constrained quantization framework
【24h】

An investigation of wavelet-based image coding using an entropy-constrained quantization framework

机译:基于熵约束量化框架的基于小波的图像编码研究

获取原文
获取原文并翻译 | 示例

摘要

Wavelet image decompositions generate a tree-structured set of coefficients, providing an hierarchical data-structure for representing images. A new class of previously proposed image compression algorithms has focused on new ways for exploiting dependencies between this hierarchy of wavelet coefficients using "zero-tree" data structures. This paper presents a new framework for understanding the efficiency of one specific algorithm in this class we introduced previously and dubbed the space-frequency quantization (SFQ)-based coder. It describes, at a higher level, how the SFQ-based image coder of our earlier work can be construed as a simplified attempt to design a global entropy-constrained vector quantizer (ECVQ) with two noteworthy features: (i) it uses an image-sized codebook dimension (departing from conventional small-dimensional codebooks that are applied to small image blocks); and (ii) it uses an on-line image-adaptive application of constrained ECVQ (which typically uses off-line training data in its codebook design phase). The principal insight offered by the new framework is that improved performance is achieved by more accurately characterizing the joint probabilities of arbitrary sets of wavelet coefficients. We also present an empirical statistical study of the distribution of the wavelet coefficients of high-frequency bands, which are responsible for most of the performance gain of the new class of algorithms. This study verifies that the improved performance achieved by the new class of algorithms like the SFQ-based coder can be attributed to its being designed around one conveniently structured and efficient collection of such sets, namely, the zero-tree data structure. The results of this study further inspire the design of alternative, novel data structures based on nonlinear morphological operators.
机译:小波图像分解生成树结构的系数集,从而提供用于表示图像的分层数据结构。先前提出的一类新的图像压缩算法已经集中于利用“零树”数据结构来利用小波系数的这种层次之间的依赖性的新方法。本文提供了一个新的框架,用于了解我们先前介绍的此类中一种特定算法的效率,并将其称为基于空频量化(SFQ)的编码器。它在更高层次上描述了我们早期工作中基于SFQ的图像编码器如何被解释为设计具有两个值得注意特征的全局熵约束矢量量化器(ECVQ)的简化尝试:(i)使用图像尺寸的码本尺寸(不同于应用于小图像块的常规小尺寸码本); (ii)使用受约束ECVQ的在线图像自适应应用程序(通常在其代码本设计阶段使用离线训练数据)。新框架提供的主要见解是,通过更准确地表征任意小波系数集的联合概率,可以提高性能。我们还提出了对高频频带的小波系数分布进行的经验统计研究,这是新型算法大部分性能提升的原因。这项研究验证了像基于SFQ的编码器之类的新型算法所实现的改进性能,可以归因于其围绕此类集合的一种方便结构化和有效收集的设计,即零树数据结构。这项研究的结果进一步启发了基于非线性形态学算子的替代性新颖数据结构的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号