首页> 外文期刊>Image Processing, IEEE Transactions on >Fast and Adaptive Method for SAR Superresolution Imaging Based on Point Scattering Model and Optimal Basis Selection
【24h】

Fast and Adaptive Method for SAR Superresolution Imaging Based on Point Scattering Model and Optimal Basis Selection

机译:基于点散射模型和最优基准选择的快速自适应SAR超分辨率成像方法

获取原文
获取原文并翻译 | 示例

摘要

A novel fast and adaptive method for synthetic aperture radar (SAR) superresolution imaging is developed. Based on the point scattering model in the phase history domain, a dictionary is constructed so that the superresolution imaging process can be converted to a problem of sparse parameter estimation. The approximate orthogonality of this dictionary is exploited by theoretical derivation and experimental verification. Based on the orthogonality of the dictionary, we propose a fast algorithm for basis selection. Meanwhile, a threshold for obtaining the number and positions of the scattering centers is determined automatically from the inner product curves of the bases and observed data. Furthermore, the sensitivity of the threshold on estimation performance is analyzed. To reduce the burden of mass calculation and memory, a simplified superresolution imaging process is designed according to the characteristics of the imaging parameters. The experimental results of the simulated images and an MSTAR image illustrate the validity of this method and its robustness in the case of the high noise level. Compared with the traditional regularization method with the sparsity constraint, our proposed method suffers less computation complexity and has better adaptability.
机译:提出了一种新的合成孔径雷达(SAR)超分辨率成像的快速自适应方法。基于相历史域中的点散射模型,构造了字典,从而可以将超分辨率成像过程转换为稀疏参数估计的问题。该字典的近似正交性通过理论推导和实验验证得到利用。基于字典的正交性,我们提出了一种快速的基础选择算法。同时,从碱基的内积曲线和观测数据自动确定用于获得散射中心的数量和位置的阈值。此外,分析了阈值对估计性能的敏感性。为了减轻大量计算和存储的负担,根据成像参数的特征设计了简化的超分辨率成像过程。仿真图像和MSTAR图像的实验结果说明了该方法的有效性及其在高噪声水平下的鲁棒性。与具有稀疏约束的传统正则化方法相比,该方法计算复杂度小,适应性强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号