首页> 外文期刊>Image Processing, IEEE Transactions on >Joint Registration and Super-Resolution With Omnidirectional Images
【24h】

Joint Registration and Super-Resolution With Omnidirectional Images

机译:全向图像的联合配准和超分辨率

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transform-domain super-resolution problem in a spherical imaging framework. We describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high-resolution image with help of the spherical Fourier transform (SFT). As low-resolution images might not be perfectly registered in practice, the impact of inaccurate alignment on the transform coefficients is analyzed. We then cast the joint registration and super-resolution problem as a total least-squares norm minimization problem in the SFT domain. A $l_{1}$-regularized total least-squares problem is considered and solved efficiently by interior point methods. Experiments with synthetic and natural images show that the proposed methods lead to effective reconstruction of high-resolution images even when large registration errors exist in the low-resolution images. The quality of the reconstructed images also increases rapidly with the number of low-resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes. Finally, we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction quality.
机译:本文讨论了从具有不精确配准的多个低分辨率图像中重建高分辨率全向图像的方法。当来自低分辨率视觉传感器的全向图像可以唯一地映射到2球面上时,这种重构可以描述为球面成像框架中的变换域超分辨率问题。我们描述了在SO(3)旋转组中任意旋转的几个球形图像如何借助球形傅立叶变换(SFT)有助于高分辨率图像的重建。由于在实践中低分辨率图像可能无法完美配准,因此分析了不正确对准对变换系数的影响。然后,我们将联合配准和超分辨率问题转换为SFT域中的总最小二乘模最小化问题。通过内点方法,可以有效地解决$ l_ {1} $-正则化的总最小二乘问题。使用合成图像和自然图像进行的实验表明,即使在低分辨率图像中存在较大的配准误差,所提出的方法也可以有效地重建高分辨率图像。随着低分辨率图像数量的增加,重建图像的质量也迅速提高,这证明了所提出的解决方案在超分辨率方案中的优势。最后,我们强调了附加正则化约束的好处,该约束显然可以减少噪声并提高重建质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号