首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Joint Image Registration and Super-Resolution From Low-Resolution Images With Zooming Motion
【24h】

Joint Image Registration and Super-Resolution From Low-Resolution Images With Zooming Motion

机译:通过缩放运动从低分辨率图像进行联合图像配准和超分辨率

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new framework for joint image registration and high-resolution (HR) image reconstruction from multiple low-resolution (LR) observations with zooming motion. Conventional super-resolution (SR) methods typically formulate the SR problem as a two-stage process, namely, image registration followed by HR reconstruction. An important step in image SR is the effective estimation of motion parameters. However, the registration algorithms in these two-stage processes experience various degrees of errors. This could degrade the quality of subsequent HR reconstruction. In view of this, this paper presents a new approach that performs joint image registration and SR reconstruction. The proposed iterative SR framework enables the HR image and motion parameters to be estimated simultaneously and progressively. This could increase the potential SR improvement as more accurate estimates of motion parameters could be obtained iteratively. Experimental results show that the proposed method is effective in performing image registration and SR for simulated and real-life images and videos.
机译:本文提出了一种新的框架,用于通过缩放运动从多个低分辨率(LR)观测值中进行联合图像配准和高分辨率(HR)图像重建。传统的超分辨率(SR)方法通常将SR问题描述为一个两阶段过程,即图像配准和HR重建。图像SR的重要一步是有效估计运动参数。但是,这两个阶段的过程中的注册算法会遇到各种程度的错误。这可能会降低后续HR重建的质量。鉴于此,本文提出了一种执行联合图像配准和SR重建的新方法。所提出的迭代SR框架使HR图像和运动参数可以同时逐步进行估算。由于可以迭代获得更准确的运动参数估计,因此可以增加潜在的SR改善。实验结果表明,该方法可以有效地对模拟和真实的图像和视频进行图像配准和SR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号