首页> 外文期刊>Image Processing, IEEE Transactions on >Human Object Inpainting Using Manifold Learning-Based Posture Sequence Estimation
【24h】

Human Object Inpainting Using Manifold Learning-Based Posture Sequence Estimation

机译:使用基于流形学习的姿势序列估计的人体对象修复

获取原文
获取原文并翻译 | 示例

摘要

We propose a human object inpainting scheme that divides the process into three steps: 1) human posture synthesis; 2) graphical model construction; and 3) posture sequence estimation. Human posture synthesis is used to enrich the number of postures in the database, after which all the postures are used to build a graphical model that can estimate the motion tendency of an object. We also introduce two constraints to confine the motion continuity property. The first constraint limits the maximum search distance if a trajectory in the graphical model is discontinuous, and the second confines the search direction in order to maintain the tendency of an object's motion. We perform both forward and backward predictions to derive local optimal solutions. Then, to compute an overall best solution, we apply the Markov random field model and take the potential trajectory with the maximum total probability as the final result. The proposed posture sequence estimation model can help identify a set of suitable postures from the posture database to restore damaged/missing postures. It can also make a reconstructed motion sequence look continuous.
机译:我们提出了一种人体修复方案,该方案将过程分为三个步骤:1)人体姿势合成; 2)图形模型的建立; 3)姿势序列估计。人体姿势合成用于丰富数据库中的姿势数量,之后,所有姿势均用于构建可估计对象运动趋势的图形模型。我们还引入了两个约束来限制运动连续性。如果图形模型中的轨迹不连续,则第一个约束条件将限制最大搜索距离,第二个约束条件将限制搜索方向,以保持对象运动的趋势。我们执行前向和后向预测,以得出局部最优解。然后,为了计算总体最佳解决方案,我们应用马尔可夫随机场模型,并以总概率最大的潜在轨迹作为最终结果。提出的姿势序列估计模型可以帮助从姿势数据库中识别出一组合适的姿势,以恢复损坏/丢失的姿势。它还可以使重建的运动序列看起来连续。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号