首页> 外文期刊>Image Processing, IEEE Transactions on >Semantic-Gap-Oriented Active Learning for Multilabel Image Annotation
【24h】

Semantic-Gap-Oriented Active Learning for Multilabel Image Annotation

机译:面向语义间隙的主动学习用于多标签图像注释

获取原文
获取原文并翻译 | 示例

摘要

User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.
机译:用户交互是处理图像标注中语义间隙问题的有效方法。为了使用户在交互中的努力最小化,提出了许多主动学习方法。这些方法分别或相关地处理语义概念。但是,他们仍然忽略了用户反馈的主要动机:解决语义鸿沟。每个概念的语义鸿沟的大小是影响用户反馈性能的重要因素。用户应为语义鸿沟较大的概念付出更多的努力,反之亦然。在本文中,我们提出了一种面向语义间隙的主动学习方法,该方法将语义间隙量度纳入基于信息最小化的样本选择策略中。主动学习框架中使用的基本学习模型是结合了语义相关性的基于稀疏图的半监督学习方法的扩展多标签版本。在两个基准图像数据集上进行的广泛实验证明了将语义差距度量引入主动学习过程的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号