首页> 外文期刊>Image Processing, IEEE Transactions on >Semisupervised Biased Maximum Margin Analysis for Interactive Image Retrieval
【24h】

Semisupervised Biased Maximum Margin Analysis for Interactive Image Retrieval

机译:用于交互式图像检索的半监督偏向最大余量分析

获取原文
获取原文并翻译 | 示例

摘要

With many potential practical applications, content-based image retrieval (CBIR) has attracted substantial attention during the past few years. A variety of relevance feedback (RF) schemes have been developed as a powerful tool to bridge the semantic gap between low-level visual features and high-level semantic concepts, and thus to improve the performance of CBIR systems. Among various RF approaches, support-vector-machine (SVM)-based RF is one of the most popular techniques in CBIR. Despite the success, directly using SVM as an RF scheme has two main drawbacks. First, it treats the positive and negative feedbacks equally, which is not appropriate since the two groups of training feedbacks have distinct properties. Second, most of the SVM-based RF techniques do not take into account the unlabeled samples, although they are very helpful in constructing a good classifier. To explore solutions to overcome these two drawbacks, in this paper, we propose a biased maximum margin analysis (BMMA) and a semisupervised BMMA (SemiBMMA) for integrating the distinct properties of feedbacks and utilizing the information of unlabeled samples for SVM-based RF schemes. The BMMA differentiates positive feedbacks from negative ones based on local analysis, whereas the SemiBMMA can effectively integrate information of unlabeled samples by introducing a Laplacian regularizer to the BMMA. We formally formulate this problem into a general subspace learning task and then propose an automatic approach of determining the dimensionality of the embedded subspace for RF. Extensive experiments on a large real-world image database demonstrate that the proposed scheme combined with the SVM RF can significantly improve the performance of CBIR systems.
机译:在许多潜在的实际应用中,基于内容的图像检索(CBIR)在过去几年中引起了广泛的关注。已经开发了各种相关反馈(RF)方案,作为弥合低级视觉特征和高级语义概念之间的语义鸿沟的强大工具,从而提高了CBIR系统的性能。在各种RF方法中,基于支持向量机(SVM)的RF是CBIR中最流行的技术之一。尽管取得了成功,但直接将SVM用作RF方案有两个主要缺点。首先,它平等地对待正反馈和负反馈,这是不合适的,因为两组训练反馈具有不同的属性。其次,尽管大多数基于SVM的RF技术在构建良好的分类器方面非常有帮助,但它们并未考虑未标记的样本。为了探索克服这两个缺点的解决方案,在本文中,我们提出了一种偏差最大余量分析(BMMA)和半监督BMMA(SemiBMMA),以整合反馈的独特属性并为基于SVM的RF方案利用未标记样本的信息。 BMMA基于局部分析将正反馈与负反馈区分开来,而SemiBMMA可通过向BMMA引入拉普拉斯正则化函数来有效整合未标记样品的信息。我们将这个问题正式表述为一般的子空间学习任务,然后提出一种确定RF嵌入式子空间维数的自动方法。在大型现实图像数据库上进行的大量实验表明,所提出的方案与SVM RF结合可以显着提高CBIR系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号