首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Learning a Maximum Margin Subspace for Image Retrieval
【24h】

Learning a Maximum Margin Subspace for Image Retrieval

机译:学习最大边距子空间以进行图像检索

获取原文
获取原文并翻译 | 示例

摘要

One of the fundamental problems in Content-Based Image Retrieval (CBIR) has been the gap been low level visual features and high level semantic concepts. To narrow down this gap, relevance feedback is introduced into image retrieval. With the user provided information, a classifier can be learned to discriminate between positive and negative examples. However, in real world applications, the number of user feedbacks is usually too small comparing to the dimensionality of the image space. Thus, a situation of overfitting may occur. In order to cope with the high dimensionality, we propose a novel supervised method for dimensionality reduction called Maximum Margin Projection (MMP). MMP aims to maximize the margin between positive and negative examples at each local neighborhood. Different from traditional dimensionality reduction algorithms such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the global Euclidean structure, MMP is designed for discovering the local manifold structure. Therefore, MMP is likely to be more suitable for image retrieval where nearest neighbor search is usually involved. After projecting the images into a lower dimensional subspace, the relevant images get closer to the query image, thus the retrieval performance can be enhanced. The experimental results on a large image database demonstrates the effectiveness and efficiency of our proposed algorithm.
机译:基于内容的图像检索(CBIR)的基本问题之一是低级视觉特征和高级语义概念之间的差距。为了缩小这一差距,相关性反馈被引入到图像检索中。利用用户提供的信息,可以学习分类器以区分肯定和否定示例。但是,在实际应用中,与图像空间的维数相比,用户反馈的数量通常太少。因此,可能发生过度拟合的情况。为了应对高维,我们提出了一种新的有监督的降维方法,称为最大余量投影(MMP)。 MMP的目标是在每个本地社区最大化正例与负例之间的余量。与传统的降维算法(例如主成分分析(PCA)和线性判别分析(LDA))只能有效地查看全局欧几里得结构不同,MMP旨在发现局部流形结构。因此,MMP可能更适合通常涉及最近邻居搜索的图像检索。将图像投影到较低维的子空间后,相关图像变得更接近查询图像,因此可以提高检索性能。在大型图像数据库上的实验结果证明了我们提出的算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号