首页> 外文期刊>Image Processing, IEEE Transactions on >Image Quality Assessment Based on Gradient Similarity
【24h】

Image Quality Assessment Based on Gradient Similarity

机译:基于梯度相似度的图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new image quality assessment (IQA) scheme, with emphasis on gradient similarity. Gradients convey important visual information and are crucial to scene understanding. Using such information, structural and contrast changes can be effectively captured. Therefore, we use the gradient similarity to measure the change in contrast and structure in images. Apart from the structural/contrast changes, image quality is also affected by luminance changes, which must be also accounted for complete and more robust IQA. Hence, the proposed scheme considers both luminance and contrast–structural changes to effectively assess image quality. Furthermore, the proposed scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme. Finally, the effects of the changes in luminance and contrast–structure are integrated via an adaptive method to obtain the overall image quality score. Extensive experiments conducted with six publicly available subject-rated databases (comprising of diverse images and distortion types) have confirmed the effectiveness, robustness, and efficiency of the proposed scheme in comparison with the relevant state-of-the-art schemes.
机译:在本文中,我们提出了一种新的图像质量评估(IQA)方案,重点是梯度相似度。渐变传达了重要的视觉信息,对于场景理解至关重要。使用这些信息,可以有效地捕获结构和对比度的变化。因此,我们使用梯度相似性来衡量图像中对比度和结构的变化。除了结构/对比度变化之外,图像质量还受亮度变化的影响,亮度变化也必须考虑在内,以确保完整且更可靠的IQA。因此,提出的方案同时考虑了亮度和对比度结构的变化,以有效地评估图像质量。此外,所提出的方案被设计为更紧密地遵循掩蔽效果和可见性阈值,即,所提出的方案更有效地解决了当掩蔽和掩蔽信号均较小时的情况。最后,通过自适应方法将亮度和对比度结构变化的影响综合在一起,以获得整体图像质量得分。与六个最新的相关方案相比,使用六个可公开获得的主题评分数据库(包含各种图像和变形类型)进行的广泛实验证实了该方案的有效性,鲁棒性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号