首页> 外文期刊>IEEE Transactions on Image Processing >Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization
【24h】

Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization

机译:学习特定类别的词典和共享词典以进行细粒度图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.
机译:本文通过学习每个类别的特定类别词典和所有类别的共享词典来实现细粒度图像分类。此类特定于类别的词典对不同类别之间的细微视觉差异进行编码,而共享字典对所有类别之间的常见视觉图案进行编码。为此,出于特征编码的目的,我们在不同词典之间施加了不连贯性约束。另外,为了使学习的字典稳定,我们还强加了每个字典应该是自相干的约束。我们提出的字典学习公式不仅适用于细粒度分类,而且还改进了常规的基本级对象分类和其他任务,例如事件识别。在五个数据集上的实验结果表明,我们的方法可以胜过最新的细粒度图像分类框架以及基于稀疏编码的字典学习框架。所有这些结果证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号