首页> 外文期刊>Image Processing, IEEE Transactions on >Relevance Metric Learning for Person Re-Identification by Exploiting Listwise Similarities
【24h】

Relevance Metric Learning for Person Re-Identification by Exploiting Listwise Similarities

机译:利用列表相似度进行人员重新识别的相关度量学习

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification aims to match people across non-overlapping camera views, which is an important but challenging task in video surveillance. In order to obtain a robust metric for matching, metric learning has been introduced recently. Most existing works focus on seeking a Mahalanobis distance by employing sparse pairwise constraints, which utilize image pairs with the same person identity as positive samples, and select a small portion of those with different identities as negative samples. However, this training strategy has abandoned a large amount of discriminative information, and ignored the relative similarities. In this paper, we propose a novel relevance metric learning method with listwise constraints (RMLLCs) by adopting listwise similarities, which consist of the similarity list of each image with respect to all remaining images. By virtue of listwise similarities, RMLLC could capture all pairwise similarities, and consequently learn a more discriminative metric by enforcing the metric to conserve predefined similarity lists in a low-dimensional projection subspace. Despite the performance enhancement, RMLLC using predefined similarity lists fails to capture the relative relevance information, which is often unavailable in practice. To address this problem, we further introduce a rectification term to automatically exploit the relative similarities, and develop an efficient alternating iterative algorithm to jointly learn the optimal metric and the rectification term. Extensive experiments on four publicly available benchmarking data sets are carried out and demonstrate that the proposed method is significantly superior to the state-of-the-art approaches. The results also show that the introduction of the rectification term could further boost the performance of RMLLC.
机译:人员重新识别旨在使非重叠摄像机视图中的人员匹配,这是视频监控中一项重要但具有挑战性的任务。为了获得用于匹配的鲁棒度量,最近已经引入了度量学习。现有的大多数工作着重于通过采用稀疏的成对约束来寻找马氏距离,该约束利用具有相同人身份的图像对作为正样本,并选择具有不同身份的一小部分作为负样本。但是,这种培训策略已放弃了大量的歧视性信息,而忽略了相对的相似性。在本文中,我们通过采用基于列表的相似性,提出了一种具有基于列表的约束(RMLLC)的新颖的相关度量学习方法,该方法包括每个图像相对于所有其余图像的相似性列表。借助于按列表的相似性,RMLLC可以捕获所有成对的相似性,并因此通过强制该度量在低维投影子空间中保留预定义的相似性列表来学习更具区分性的度量​​。尽管性能得到了提高,但使用预定义相似性列表的RMLLC无法捕获相对相关性信息,这在实践中通常是不可用的。为了解决这个问题,我们进一步引入了一个校正项来自动利用相对相似性,并开发了一种有效的交替迭代算法来共同学习最优度量和校正项。在四个可公开获得的基准数据集上进行了广泛的实验,证明了所提出的方法明显优于最新方法。结果还表明,引入整流术语可以进一步提高RMLLC的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号