首页> 外文期刊>Journal of Parallel and Distributed Computing >Person re-identification with multiple similarity probabilities using deep metric learning for efficient smart security applications
【24h】

Person re-identification with multiple similarity probabilities using deep metric learning for efficient smart security applications

机译:利用深度度量学习对高效智能安全应用程序进行多种相似概率重新识别

获取原文
获取原文并翻译 | 示例

摘要

Surveillance video analysis plays a vital role in the daily operations of smart cities, which increasingly relies on person re-identification technology to sustain smart security applications. However, research challenges of re-identification remain especially in terms of recognizing the different appearances of the same person in a harsh real-world environment: (1) the adaptability of the selected features to the dynamic environment cannot be guaranteed, and (2) existing methods rooted from metric learning aim to find a single metric function, and they lack the ability to measure the different appearances of the same person. To address these problems, this study proposes a multiple deep metric learning method empowered by the functionality of person similarity probability measurement. The proposed method exploits multiple stacked auto-encoder networks and classification networks to quantify pedestrians' similarity relations. The stacked auto-encoder networks directly recognize persons from surveillance images at the pixel level. The classification networks are equipped with the Softmax regression models and produce multiple similarity probabilities to characterize different appearances belonging to the same person. An Adaboost-like model is designed to fuse the probabilities corresponding to multiple metrics, which ensures a high accuracy of recognition. Experimental results on two public datasets (VIPeR and CUHK-01) indicate that the proposed method outperforms existing algorithms by 2%-10% at rank 1. Based on the similarity probabilities learned by the proposed model, the algorithm for matching the person pair can achieve a time complexity as low as O(n), which can be deployed at a large scale on the distributed intelligent surveillance network, with each node maintaining limited computing capabilities. (C) 2017 Elsevier Inc. All rights reserved.
机译:监控视频分析在智能城市的日常运营中起着至关重要的作用,越来越依赖于人员重新识别技术来维持智能安全应用。但是,重新识别的研究挑战仍然仍然是在识别苛刻的现实环境中的同一个人的不同外观方面尤其:(1)不能保证所选功能对动态环境的适应性,并(2)从度量学习的现有方法源于度量的旨在找到单个度量函数,并且它们缺乏测量同一个人的不同外观的能力。为了解决这些问题,本研究提出了一种通过人相似概率测量的功能赋予的多个深度度量学习方法。该方法利用多个堆叠的自动编码器网络和分类网络来量化行人的相似关系。堆叠的自动编码器网络直接识别像素级别的监控图像。分类网络配备了Softmax回归模型,并产生多种相似性概率,以表征属于同一个人的不同外观。 adaboost样模型旨在熔化对应于多个度量的概率,这确保了高精度的识别。两个公共数据集(VIPER和CUHK-01)上的实验结果表明,所提出的方法在秩1.基于所提出的模型中学到的相似概率,匹配人对匹配的算法达到与O(n)低的时间复杂性,可以在分布式智能监控网络上以大规模部署,每个节点维持有限的计算能力。 (c)2017年Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Journal of Parallel and Distributed Computing》 |2019年第10期|230-241|共12页
  • 作者单位

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Comp Sch Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Comp Sch Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Comp Sch Wuhan 430072 Hubei Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Hubei Peoples R China;

    Hangzhou Dianzi Univ Sch Cyberspace Hangzhou 310018 Zhejiang Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Comp Sch Wuhan 430072 Hubei Peoples R China|Wuhan Univ Hubei Key Lab Multimedia & Network Commun Engn Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Comp Sch Wuhan 430072 Hubei Peoples R China|Wuhan Univ Hubei Key Lab Multimedia & Network Commun Engn Wuhan 430072 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smart security; Person re-identification; Surveillance video analysis; Deep metric learning; Similarity probability;

    机译:智能安全;人重新识别;监控视频分析;深度度量学习;相似概率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号