首页> 外文期刊>Image Processing, IEEE Transactions on >Face Recognition Across Non-Uniform Motion Blur, Illumination, and Pose
【24h】

Face Recognition Across Non-Uniform Motion Blur, Illumination, and Pose

机译:跨非均匀运动模糊,照明和姿势的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose a methodology for face recognition in the presence of space-varying motion blur comprising of arbitrarily-shaped kernels. We model the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show that the set of all images obtained by non-uniformly blurring a given image forms a convex set. We first propose a non-uniform blur-robust algorithm by making use of the assumption of a sparse camera trajectory in the camera motion space to build an energy function with -norm constraint on the camera motion. The framework is then extended to handle illumination variations by exploiting the fact that the set of all images obtained from a face image by non-uniform blurring and changing the illumination forms a bi-convex set. Finally, we propose an elegant extension to also account for variations in pose.
机译:用于在存在模糊的情况下执行面部识别的现有方法基于卷积模型,并且不能处理由于手持式摄像机中的倾斜和旋转而经常引起的非均匀模糊情况。在本文中,我们提出了一种在存在任意形状内核的时空运动模糊的情况下进行人脸识别的方法。我们将模糊的面孔建模为聚焦画廊脸部的几何变换实例的凸组合,并显示通过非均匀模糊给定图像获得的所有图像的集合形成凸集。我们首先通过利用相机运动空间中稀疏相机轨迹的假设,提出一种对相机运动具有-norm约束的能量函数的非均匀模糊鲁棒算法。然后通过利用以下事实来扩展框架以处理照明变化:通过不均匀模糊和改变照明从面部图像获得的所有图像的集合形成双凸集的事实。最后,我们提出了一种优雅的扩展方式,也可以考虑姿势的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号