首页> 外文期刊>IEEE Transactions on Image Processing >A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images
【24h】

A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images

机译:基于物理的深度学习方法对高光谱图像的阴影不变表示

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes the Relit Spectral AngleStacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.
机译:本文提出了Relit Spectral AngleStacked Autoencoder,这是一种新颖的无监督特征学习方法,用于将像素反射率映射到照明不变编码。这项工作扩展了“光谱角度堆叠自动编码器”,以便可以学习阴影不变映射。该方法受深度学习技术Denoising Autoencoders启发,并结合了基于物理学的照明模型,因此该算法无需任何标记的训练数据,额外的传感器,先验知识即可学习阴影不变映射。场景或普朗克照明的假设。使用从几个不同相机捕获的数据集对该方法进行了评估,并进行了实验以证明这些特征的照明不变性,以及如何将其实际用于改善对在户外获取的图像进行操作的高级感知算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号