首页> 外文期刊>Computational Imaging, IEEE Transactions on >Deep Spatial–Spectral Representation Learning for Hyperspectral Image Denoising
【24h】

Deep Spatial–Spectral Representation Learning for Hyperspectral Image Denoising

机译:用于高光谱图像去噪的深度空间光谱表示学习

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has found successful applications in restoration of two-dimensional (2-D) images including denoising, dehazing, and superresolution. However, existing deep convolutional neural network (DCNN) architecture cannot fully exploit spatial-spectral correlations in three-dimensional (3-D) hyperspectral images (HSIs) (directly extending 2-D DCNN into 3-D will significantly increase computational complexity); meantime, unlike 2-D images, there is an obstacle caused by the shortage of training data for HSIs. To meet those challenges, we present a novel, deep-learning framework for 3-D HSI denoising with the following contributions. First, inspired by the success of U-net in low-dose current-transformer denoising, we propose a novel approach of encoding rich multi-scale information of HSIs by a modified 3-D U-net. Second, we present a computationally efficient implementation of 3-D U-net based on the strategy of separable filtering. By decomposing 3-D filtering into 2-D spatial filtering and 1-D spectral filtering, we can achieve substantial savings on the number of network parameters to keep the computational complexity low. Third, we have developed a transfer learning approach of synthetically generating HSIs from RGB images as supplementary training data. The synthesized HSIs are used for the initial training of the modified 3-D U-net denoising network, which will be fine-tuned on real HSI images. Experimental results have shown that the proposed 3-D U-net denoising method significantly outperforms existing model-based HSI denoising methods.
机译:深度学习已在恢复二维(2-D)图像(包括去噪,去雾和超分辨率)中获得成功的应用。但是,现有的深度卷积神经网络(DCNN)体系结构无法完全利用三维(3-D)高光谱图像(HSI)中的空间光谱相关性(将2-D DCNN直接扩展为3-D将大大增加计算复杂度);同时,与2-D图像不同,由于HSI的训练数据不足而造成障碍。为了应对这些挑战,我们提出了一种新颖的深度学习3D HSI去噪的框架,并做出了以下贡献。首先,受U-net在低剂量电流互感器降噪中的成功启发,我们提出了一种通过改进的3-D U-net编码HSI的丰富多尺度信息的新颖方法。其次,我们提出了基于可分离滤波策略的3-D U-net的高效计算实现。通过将3D滤波分解为2D空间滤波和1D频谱滤波,我们可以节省大量网络参数,从而保持较低的计算复杂度。第三,我们开发了一种转移学习方法,可以从RGB图像综合生成HSI作为补充训练数据。合成的HSI用于修改的3-D U-net降噪网络的初始训练,该训练将在实际HSI图像上进行微调。实验结果表明,所提出的3-D U-net去噪方法明显优于现有的基于模型的HSI去噪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号