首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Spectral–Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising
【24h】

Spectral–Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising

机译:高光谱图像去噪的光谱空间自适应稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel spectral–spatial adaptive sparse representation (SSASR) method is proposed for hyperspectral image (HSI) denoising. The proposed SSASR method aims at improving noise-free estimation for noisy HSI by making full use of highly correlated spectral information and highly similar spatial information via sparse representation, which consists of the following three steps. First, according to spectral correlation across bands, the HSI is partitioned into several nonoverlapping band subsets. Each band subset contains multiple continuous bands with highly similar spectral characteristics. Then, within each band subset, shape-adaptive local regions consisting of spatially similar pixels are searched in spatial domain. This way, spectral–spatial similar pixels can be grouped. Finally, the highly correlated and similar spectral–spatial information in each group is effectively used via the joint sparse coding, in order to generate better noise-free estimation. The proposed SSASR method is evaluated by different objective metrics in both real and simulated experiments. The numerical and visual comparison results demonstrate the effectiveness and superiority of the proposed method.
机译:在本文中,提出了一种新颖的光谱空间自适应稀疏表示(SSASR)方法,用于高光谱图像(HSI)去噪。提出的SSASR方法旨在通过稀疏表示充分利用高度相关的频谱信息和高度相似的空间信息,从而改善噪声HSI的无噪声估计,该过程包括以下三个步骤。首先,根据频带之间的频谱相关性,将HSI划分为几个不重叠的频带子集。每个波段子集包含多个具有高度相似光谱特征的连续波段。然后,在每个波段子集中,在空间域中搜索由空间相似像素组成的形状自适应局部区域。这样,可以将光谱空间相似的像素进行分组。最后,通过联合稀疏编码,可以有效地使用每组中高度相关且相似的频谱空间信息,以便生成更好的无噪声估计。所提出的SSASR方法在真实和模拟实验中均通过不同的客观指标进行评估。数值和视觉比较结果证明了该方法的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号