首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Superpixel Guided Deep-Sparse-Representation Learning for Hyperspectral Image Classification
【24h】

Superpixel Guided Deep-Sparse-Representation Learning for Hyperspectral Image Classification

机译:超像素引导的深度稀疏表示学习用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new technique for hyperspectral image (HSI) classification by using superpixel guided deep-sparse-representation learning. The proposed technique constructs a hierarchical architecture by exploiting the sparse coding to learn the HSI representation. Specifically, a multiple-layer architecture using different superpixel maps is designed, where each superpixel map is generated by downsampling the superpixels gradually along with enlarged spatial regions for labeled samples. In each layer, sparse representation of pixels within every spatial region is computed to construct a histogram via the sum-pooling with l1normalization. Finally, the representations (features) learned from the multiple-layer network are aggregated and trained by a support vector machine classifier. The proposed technique has been evaluated over three public HSI data sets, including the Indian Pines image set, the Salinas image set, and the University of Pavia image set. Experiments show superior performance compared with the state-of-the-art methods.
机译:本文提出了一种通过使用超像素引导的深度稀疏表示学习进行高光谱图像(HSI)分类的新技术。所提出的技术通过利用稀疏编码来学习HSI表示来构造分层体系结构。具体而言,设计了一种使用不同超像素图的多层体系结构,其中,每个超像素图都是通过对超像素进行逐步下采样以及标记的样本的扩大的空间区域而生成的。在每一层中,通过使用l n 1 n规范化。最后,由支持向量机分类器汇总并训练从多层网络中学到的表示(特征)。这项提议的技术已经在三个公共HSI数据集上进行了评估,包括印度松树图像集,萨利纳斯图像集和帕维亚大学图像集。实验表明,与最先进的方法相比,其性能更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号