首页> 外文期刊>IEEE Transactions on Image Processing >Exploring the Effects of Blur and Deblurring to Visual Object Tracking
【24h】

Exploring the Effects of Blur and Deblurring to Visual Object Tracking

机译:探索模糊和去孔效果对视觉物体跟踪的影响

获取原文
获取原文并翻译 | 示例

摘要

The existence of motion blur can inevitably influence the performance of visual object tracking. However, in contrast to the rapid development of visual trackers, the quantitative effects of increasing levels of motion blur on the performance of visual trackers still remain unstudied. Meanwhile, although image-deblurring can produce visually sharp videos for pleasant visual perception, it is also unknown whether visual object tracking can benefit from image deblurring or not. In this paper, we present a Blurred Video Tracking (BVT) benchmark to address these two problems, which contains a large variety of videos with different levels of motion blurs, as well as ground-truth tracking results. To explore the effects of blur and deblurring to visual object tracking, we extensively evaluate 25 trackers on the proposed BVT benchmark and obtain several new interesting findings. Specifically, we find that light motion blur may improve the accuracy of many trackers, but heavy blur usually hurts the tracking performance. We also observe that image deblurring is helpful to improve tracking accuracy on heavily-blurred videos but hurts the performance of lightly-blurred videos. According to these observations, we then propose a new general GAN-based scheme to improve a tracker’s robustness to motion blur. In this scheme, a fine-tuned discriminator can effectively serve as an adaptive blur assessor to enable selective frames deblurring during the tracking process. We use this scheme to successfully improve the accuracy of 6 state-of-the-art trackers on motion-blurred videos.
机译:运动模糊的存在可能不可避免地影响视觉对象跟踪的性能。然而,与视觉跟踪器的快速发展相比,增加了运动模糊水平对视觉跟踪器的性能的定量效果仍然不孤立。同时,虽然图像去纹理可以产生视觉上尖锐的视频以获得令人愉快的视觉感知,但它也是未知视觉对象跟踪是否可以从图像去纹理中受益。在本文中,我们提出了一个模糊的视频跟踪(BVT)基准,用于解决这两个问题,其中包含具有不同级别的运动模糊的各种视频,以及地面真理跟踪结果。为了探讨模糊和去展示对视觉对象跟踪的影响,我们在建议的BVT基准上广泛评估了25个跟踪器,并获得了几种新的有趣调查结果。具体而言,我们发现轻型运动模糊可能提高许多跟踪器的准确性,但沉重的模糊通常会伤害跟踪性能。我们还观察到图像deBlurring有助于提高对重型视频的跟踪准确性,但伤害了轻微的视频的性能。根据这些观察,我们提出了一种新的基于GAN的计划,以改善跟踪器对运动模糊的鲁棒性。在该方案中,微调鉴别器可以有效地用作自适应模糊评估仪,以在跟踪过程中能够在跟踪过程中能够选择性框架脱模。我们使用此方案在运动模糊视频上成功提高了6个最先进的追踪器的准确性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2021年第1期|1812-1824|共13页
  • 作者单位

    School of Computer Science and Technology College of Intelligence and Computing Tianjin University Tianjin China;

    School of Computer Science and Technology College of Intelligence and Computing Tianjin University Tianjin China;

    School of Computer Science and Technology College of Intelligence and Computing Tianjin University Tianjin China;

    School of Computer Science and Engineering Nanyang Technological University Singapore;

    School of Computer Science and Technology College of Intelligence and Computing Tianjin University Tianjin China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tracking; Benchmark testing; Object tracking; Visualization; Target tracking; Robustness; Video tracking;

    机译:跟踪;基准测试;对象跟踪;可视化;目标跟踪;鲁棒性;视频跟踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号