首页> 外文期刊>IEEE Transactions on Image Processing >Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement
【24h】

Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement

机译:稀疏梯度正则化深视网网网络,用于强大的低光图像增强

获取原文
获取原文并翻译 | 示例

摘要

Due to the absence of a desirable objective for low-light image enhancement, previous data-driven methods may provide undesirable enhanced results including amplified noise, degraded contrast and biased colors. In this work, inspired by Retinex theory, we design an end-to-end signal prior-guided layer separation and data-driven mapping network with layer-specified constraints for single-image low-light enhancement. A Sparse Gradient Minimization sub-Network (SGM-Net) is constructed to remove the low-amplitude structures and preserve major edge information, which facilitates extracting paired illumination maps of low/normal-light images. After the learned decomposition, two sub-networks (Enhance-Net and Restore-Net) are utilized to predict the enhanced illumination and reflectance maps, respectively, which helps stretch the contrast of the illumination map and remove intensive noise in the reflectance map. The effects of all these configured constraints, including the signal structure regularization and losses, combine together reciprocally, which leads to good reconstruction results in overall visual quality. The evaluation on both synthetic and real images, particularly on those containing intensive noise, compression artifacts and their interleaved artifacts, shows the effectiveness of our novel models, which significantly outperforms the state-of-the-art methods.
机译:由于缺乏对低光图像增强的理想目标,先前的数据驱动方法可以提供不希望的增强结果,包括放大的噪声,降级对比度和偏置颜色。在这项工作中,灵感来自RetineX理论,我们设计了一个端到端信号的先端信号先前引导层分离和数据驱动映射网络,具有层指定的约束,用于单图像低光增强。构造稀疏梯度最小化子网(SGM-NET)以去除低幅度结构并保留主要边缘信息,这有利于提取低/正灯图像的配对照明图。在学习的分解之后,利用两个子网(增强网和恢复网)来分别预测增强的照明和反射率图,这有助于拉伸照明图的对比度并去除反射图中的强化噪声。所有这些配置约束的效果,包括信号结构正则化和损耗,相互作用,这导致良好的重建导致整体视觉质量。合成和真实图像的评估,特别是对包含密集噪声,压缩伪影及其交错的伪影的评估显示了我们的新型模型的有效性,这显着优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号