首页> 外文期刊>IEEE Transactions on Image Processing >Coupled Network for Robust Pedestrian Detection With Gated Multi-Layer Feature Extraction and Deformable Occlusion Handling
【24h】

Coupled Network for Robust Pedestrian Detection With Gated Multi-Layer Feature Extraction and Deformable Occlusion Handling

机译:具有门控多层特征提取和可变形闭塞处理的强大行人检测网络

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting ismall-scaled pedestrians and occluded pedestrians remains a challenging problem. In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues. One of the sub-networks, the gated multi-layer feature extraction sub-network, aims to adaptively generate discriminative features for pedestrian candidates in order to robustly detect pedestrians with large variations on scale. The second sub-network targets on handling the occlusion problem of pedestrian detection by using deformable regional region of interest (RoI)-pooling. We investigate two different gate units for the gated sub-network, namely, the channel-wise gate unit and the spatio-wise gate unit, which can enhance the representation ability of the regional convolutional features among the channel dimensions or across the spatial domain, repetitively. Ablation studies have validated the effectiveness of both the proposed gated multi-layer feature extraction sub-network and the deformable occlusion handling sub-network. With the coupled framework, our proposed pedestrian detector achieves promising results on both two pedestrian datasets, especially on detecting small or occluded pedestrians. On the CityPersons dataset, the proposed detector achieves the lowest missing rates (i.e. 40.78% and 34.60%) on detecting small and occluded pedestrians, surpassing the second best comparison method by 6.0% and 5.87%, respectively.
机译:随着深度卷积神经网络的发展,行人检测方法得到了显着改善。尽管如此,检测ISMALL缩放的行人和闭塞行人仍然是一个具有挑战性的问题。在本文中,我们提出了一种与夫妻网络的行人检测方法同时解决这两个问题。其中一个子网,门控多层特征提取子网,旨在自适应地为行人候选者产生识别特征,以便鲁布布地检测具有较大变化的行人。通过使用可变形的区域感兴趣的区域(ROI) - 水解来处理行人检测闭塞问题的第二子网靶标。我们研究了所门控的两个不同的栅极单元,即通道 - 方向栅极单元和时空栅极单元,其可以增强通道尺寸或空间域之间的区域卷积特征的表示能力,重复地。消融研究已经验证了所提出的门控多层特征提取子网和可变形遮挡处理子网的有效性。通过耦合框架,我们所提出的行人探测器在两个行人数据集上实现了有希望的结果,特别是在检测小或遮挡行人时。在CityPersons DataSet上,拟议的探测器在检测小型和闭塞行人的情况下实现最低缺失的速率(即40.78%和34.60%),分别超越了第二个最佳比较方法6.0%和5.87%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号