首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >An Occlusion-Robust Feature Selection Framework in Pedestrian Detection
【2h】

An Occlusion-Robust Feature Selection Framework in Pedestrian Detection

机译:行人检测中的遮挡鲁棒特征选择框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Better features have been driving the progress of pedestrian detection over the past years. However, as features become richer and higher dimensional, noise and redundancy in the feature sets become bigger problems. These problems slow down learning and can even reduce the performance of the learned model. Current solutions typically exploit dimension reduction techniques. In this paper, we propose a simple but effective feature selection framework for pedestrian detection. Moreover, we introduce occluded pedestrian samples into the training process and combine it with a new feature selection criterion, which enables improved performances for occlusion handling problems. Experimental results on the Caltech Pedestrian dataset demonstrate the efficiency of our method over the state-of-art methods, especially for the occluded pedestrians.
机译:在过去的几年中,更好的功能一直在推动行人检测的发展。然而,随着特征变得更丰富和更高维,特征集中的噪声和冗余成为更大的问题。这些问题会减慢学习速度,甚至会降低学习模型的性能。当前的解决方案通常利用降维技术。在本文中,我们提出了一种简单但有效的行人检测特征选择框架。此外,我们将遮挡的行人样本引入训练过程,并将其与新的特征选择标准相结合,从而提高了遮挡处理问题的性能。在Caltech行人数据集上的实验结果证明了我们的方法相对于最新方法的效率,尤其是对于被遮挡的行人而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号