首页> 外文期刊>IEEE Transactions on Image Processing >Variational Bayesian Blind Color Deconvolution of Histopathological Images
【24h】

Variational Bayesian Blind Color Deconvolution of Histopathological Images

机译:组织病理学图像的变形贝叶斯盲颜色卷积

获取原文
获取原文并翻译 | 示例

摘要

Most whole-slide histological images are stained with two or more chemical dyes. Slide stain separation or color deconvolution is a crucial step within the digital pathology workflow. In this paper, the blind color deconvolution problem is formulated within the Bayesian framework. Starting from a multi-stained histological image, our model takes into account both spatial relations among the concentration image pixels and similarity between a given reference color-vector matrix and the estimated one. Using Variational Bayes inference, three efficient new blind color deconvolution methods are proposed which provide automated procedures to estimate all the model parameters in the problem. A comparison with classical and current state-of-the-art color deconvolution algorithms using real images has been carried out demonstrating the superiority of the proposed approach.
机译:大多数全载体组织学图像用两种或更多种化学染料染色。滑块污渍分离或颜色去卷积是数字病理工作流程中的关键步骤。在本文中,在贝叶斯框架内制定了盲目的解卷积问题。从多染色的组织学图像开始,我们的模型考虑了给定参考颜色矢量矩阵和估计的浓度图像像素和相似性之间的空间关系。使用变分贝叶斯推理,提出了三种有效的新盲彩折叠方法,提供自动化程序来估计问题中的所有模型参数。已经进行了使用真实图像的经典和最新的颜色解卷积算法的比较,示出了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号