首页> 外文期刊>Image Processing, IEEE Transactions on >Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors
【24h】

Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors

机译:具有学生先验先验的基于变分贝叶斯稀疏核的盲图像反卷积

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new Bayesian model for the blind image deconvolution (BID) problem. The main novelty of this model is the use of a sparse kernel-based model for the point spread function (PSF) that allows estimation of both PSF shape and support. In the herein proposed approach, a robust model of the BID errors and an image prior that preserves edges of the reconstructed image are also used. Sparseness, robustness, and preservation of edges are achieved by using priors that are based on the Student's-t probability density function (PDF). This pdf, in addition to having heavy tails, is closely related to the Gaussian and, thus, yields tractable inference algorithms. The approximate variational inference methodology is used to solve the corresponding Bayesian model. Numerical experiments are presented that compare this BID methodology to previous ones using both simulated and real data.
机译:在本文中,我们为盲图像反卷积(BID)问题提出了一种新的贝叶斯模型。该模型的主要新颖之处在于将基于稀疏核的模型用于点扩展函数(PSF),该模型可以估计PSF形状和支撑。在本文提出的方法中,还使用了BID错误的鲁棒模型和保留重建图像的边缘的图像先验。稀疏性,鲁棒性和边缘保留性通过使用基于Student-t概率密度函数(PDF)的先验来实现。该pdf除了具有笨拙的尾巴以外,还与高斯密切相关,因此产生了易于处理的推理算法。近似变分推断方法用于求解相应的贝叶斯模型。提出了数值实验,使用模拟和实际数据将该BID方法与以前的方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号