首页> 外文期刊>IEEE Transactions on Image Processing >Deep Active Shape Model for Robust Object Fitting
【24h】

Deep Active Shape Model for Robust Object Fitting

机译:深度主动形状模型,适用于鲁棒物体配件

获取原文
获取原文并翻译 | 示例

摘要

Object recognition and localization is still a very challenging problem, despite recent advances in deep learning (DL) approaches, especially for objects with varying shapes and appearances. Statistical models, such as an Active Shape Model (ASM), rely on a parametric model of the object, allowing an easy incorporation of prior knowledge about shape and appearance in a principled way. To take advantage of these benefits, this paper proposes a new ASM framework that addresses two tasks: (i) comparing the performance of several image features used to extract observations from an input image; and (ii) improving the performance of the model fitting by relying on a probabilistic framework that allows the use of multiple observations and is robust to the presence of outliers. The goal in (i) is to maximize the quality of the observations by exploring a wide set of handcrafted features (HOG, SIFT, and texture templates) and more recent DL-based features. Regarding (ii), we use the Generalized Expectation-Maximization algorithm to deal with outliers and to extend the fitting process to multiple observations. The proposed framework is evaluated in the context of facial landmark fitting and the segmentation of the endocardium of the left ventricle in cardiac magnetic resonance volumes. We experimentally observe that the proposed approach is robust not only to outliers, but also to adverse initialization conditions and to large search regions (from where the observations are extracted from the image). Furthermore, the results of the proposed combination of the ASM with DL-based features are competitive with more recent DL approaches (e.g. FCN [1], U-Net [2] and CNN Cascade [3]), showing that it is possible to combine the benefits of statistical models and DL into a new deep ASM probabilistic framework.
机译:尽管最近在深度学习(DL)方法中,但是对于具有不同形状和外观的物体,但是仍然是一个非常具有挑战性的问题。统计模型,例如活动形状模型(ASM),依赖于物体的参数模型,允许以原则的方式轻松地结合关于形状和外观的先前知识。为了利用这些优势,本文提出了一种新的ASM框架,解决了两个任务:(i)比较用于从输入图像中提取观察的几个图像特征的性能; (ii)通过依赖于允许使用多种观察的概率框架来提高模型拟合的性能,并对异常值的存在稳健。 (i)的目标是通过探索广泛的手工特征(HOG,SIFT和纹理模板)和更新的基于DL的特征来最大限度地提高观察的质量。关于(ii),我们使用广义期望最大化算法处理异常值并将拟合过程扩展到多个观察。在面部地标拟合的背景下评估所提出的框架,以及心脏磁共振作用中左心室内心的细分。我们通过实验观察到所提出的方法不仅适用于异常值,而且还具有不利的初始化条件和大的搜索区域(从图像中提取观察的位置)。此外,ASM与基于DL的特征的提出组合的结果具有更近期的DL方法(例如FCN [1],U-Net [2]和CNN级联[3]),表明它是可能的将统计模型和DL的好处与新的ASM概率框架结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号