首页> 外文OA文献 >Object segmentation by fitting statistical shape models : a Kernel-based approach with application to wisdom tooth segmentation from CBCT images
【2h】

Object segmentation by fitting statistical shape models : a Kernel-based approach with application to wisdom tooth segmentation from CBCT images

机译:通过拟合统计形状模型进行对象分割:基于核的方法,应用于CBCT图像的智齿分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image segmentation is an important and challenging task in medical image analysis. Especially from low-quality images, segmentation algorithms have to cope with misleading background clutter, insufficient object boundaries and noise in the image. Statistical shape models are a powerful tool to tackle these problems. However, their construction as well as their application for segmentation remain challenging. In this thesis, we focus on the wisdom-tooth shape and its segmentation from Cone Beam Computed Tomography images. The large shape variation leads to difficult registration problems and an often too restrictive shape model, while the challenging appearance of the wisdom tooth makes the model fitting difficult.udTo tackle these problems, we follow on kernel-based approaches to registration and shape modeling. We introduce a kernel, which considers landmarks as an additional prior in image registration. This allowsudto locally improve the registration accuracy. We present a Demons-like registration method with an inhomogeneous regularization which allows to apply such a landmark kernel. udFor modeling the shape variation, we construct a kernel comprising a generic smoothness and an empirical sample covariance. With this combined kernel, we increase the flexibility of the statistical shape model. We make use of a reproducing kernel Hilbert space framework for registration, where we apply this combined kernel as reproducing kernel. To make the approach computationally feasible, we perform a low-rankudapproximation of the specific kernel function.udBecause of a heterogeneous appearance inside the wisdom tooth, fitting the statistical model to plain intensity images is difficult. We build a nonparametric appearance model, based on random forest regression, which abstracts the raw images to semantic probability maps. Hence, the misleading structures become semantic values, which greatly simplificates the shape model fitting.
机译:图像分割是医学图像分析中重要且具有挑战性的任务。尤其是对于低质量的图像,分割算法必须应对误导的背景杂波,不足的对象边界和图像中的噪声。统计形状模型是解决这些问题的有力工具。然而,它们的构造以及其在分割中的应用仍然具有挑战性。在本文中,我们将重点放在锥齿计算机断层扫描图像中的智齿形状及其分割上。较大的形状变化会导致困难的配准问题,并且形状模型通常过于严格,而智齿的具有挑战性的外观使模型难以拟合。 ud为了解决这些问题,我们采用基于核的方法进行配准和形状建模。我们介绍了一个内核,该内核将地标视为图像配准中的其他先决条件。这允许 udto局部提高注册准确性。我们提出了一种具有不均匀正则化的类似于恶魔般的注册方法,该方法允许应用此类地标内核。为建模形状变化,我们构造了一个包含通用平滑度和经验样本协方差的核。使用此组合内核,我们可以提高统计形状模型的灵活性。我们使用了可复制内核的希尔伯特空间框架进行注册,在该框架中,我们将此组合内核用作可复制内核。为了使该方法在计算上可行,我们对特定核函数执行低秩 ud逼近。 ud由于智齿内部外观不均一,因此难以将统计模型拟合到普通强度图像。我们基于随机森林回归建立了一个非参数外观模型,该模型将原始图像抽象为语义概率图。因此,误导的结构成为语义值,这大大简化了形状模型的拟合。

著录项

  • 作者

    Jud Christoph;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号