首页> 外文期刊>Image and Vision Computing >A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking
【24h】

A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking

机译:一个级别集框架,使用新的增量,强大的Active Shape模型进行对象细分和跟踪

获取原文
获取原文并翻译 | 示例

摘要

Level set based approaches are widely used for image segmentation and object tracking. As these methods are usually driven by low level cues such as intensity, colour, texture, and motion they are not sufficient for many problems. To improve the segmentation and tracking results, shape priors were introduced into level set based approaches. Shape priors are generated by presenting many views a priori, but in many applications this a priori information is not available. In this paper, we present a level set based segmentation and tracking method that builds the shape model incrementally from new aspects obtained by segmentation or tracking. In addition, in order to tolerate errors during the segmentation process, we present a robust Active Shape Model, which provides a robust shape prior in each level set iteration step. For the tracking, we use a simple decision function to maintain the desired topology for multiple regions. We can even handle full occlusions and objects, which are temporarily hidden in containers by combining the decision function and our shape model. Our experiments demonstrate the improvement of the level set based segmentation and tracking using an Active Shape Model and the advantages of our incremental, robust method over standard approaches.
机译:基于水平集的方法广泛用于图像分割和对象跟踪。由于这些方法通常受诸如强度,颜色,纹理和运动之类的低级提示驱动,因此不足以解决许多问题。为了改善分割和跟踪结果,将形状先验引入到基于水平集的方法中。形状先验是通过先验呈现多个视图来生成的,但是在许多应用中,先验信息不可用。在本文中,我们提出了一种基于水平集的分割和跟踪方法,该方法从分割或跟踪获得的新方面逐步构建形状模型。此外,为了在分割过程中容忍错误,我们提出了一个健壮的Active Shape模型,该模型在每个级别集迭代步骤中都提供了健壮的形状。对于跟踪,我们使用简单的决策函数为多个区域维护所需的拓扑。通过组合决策函数和形状模型,我们甚至可以处理完全隐藏在容器中的完全遮挡和对象。我们的实验证明了使用Active Shape模型改进了基于水平集的分割和跟踪,以及我们的增量,鲁棒方法相对于标准方法的优势。

著录项

  • 来源
    《Image and Vision Computing》 |2009年第8期|1157-1168|共12页
  • 作者单位

    Institute of Electrical Measurement and Measurement Signal Processing, Craz University of Technology, Kopemikusgasse 24, A-8010 Graz, Austria;

    Institute for Computer Graphics and Vision, Craz University of Technology, Austria;

    Institute for Computer Graphics and Vision, Craz University of Technology, Austria;

    Odyssee Project Team INRIA Sophia Antipolis - Mediterranee, France;

    Institute of Electrical Measurement and Measurement Signal Processing, Craz University of Technology, Kopemikusgasse 24, A-8010 Graz, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    level set; segmentation; tracking; active Shape Model; incremental robust PCA;

    机译:水平设置;分割;跟踪;主动形状模型;增量鲁棒PCA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号