首页> 外文期刊>IEEE Transactions on Image Processing >Unsupervised Multi-Target Domain Adaptation: An Information Theoretic Approach
【24h】

Unsupervised Multi-Target Domain Adaptation: An Information Theoretic Approach

机译:无监督的多目标域适应:信息理论方法

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings where there is a single, labeled, source and a single target domain. However, in many real-world settings one seeks to adapt to multiple, but somewhat similar, target domains. Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail to leverage shared information among multiple domains. In this work, we propose an information theoretic approach for domain adaptation in the novel context of multiple target domains with unlabeled instances and one source domain with labeled instances. Our model aims to find a shared latent space common to all domains, while simultaneously accounting for the remaining private, domain-specific factors. Disentanglement of shared and private information is accomplished using a unified information-theoretic approach, which also serves to establish a stronger link between the latent representations and the observed data. The resulting model, accompanied by an efficient optimization algorithm, allows simultaneous adaptation from a single source to multiple target domains. We test our approach on three challenging publicly-available datasets, showing that it outperforms several popular domain adaptation methods.
机译:无监督域适应(UDA)模型专注于配对适配设置,其中有一个,标记,源和单个目标域。但是,在许多真实世界中的设置中,寻求适应多个,但有些类似的目标域。将成对适配方法应用于此设置可能是次优的,因为它们无法利用多个域之间的共享信息。在这项工作中,我们提出了一种信息理论方法,用于在多个目标域的新语法中具有未标记的实例和一个具有标记实例的一个源域的信息理论方法。我们的模型旨在找到与所有域共同的共享潜在空间,同时占剩余的私有域特定因素。使用统一的信息 - 理论方法完成共享和私人信息的解剖,该方法还用于在潜在表示和观察到的数据之间建立更强大的联系。由有效优化算法伴随的结果模型允许从单个源同时调整到多个目标域。我们在三个具有挑战性的公开可用数据集中测试我们的方法,表明它优于几种流行的域适应方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号