首页> 外文期刊>IEEE Transactions on Image Processing >Variational-Based Mixed Noise Removal With CNN Deep Learning Regularization
【24h】

Variational-Based Mixed Noise Removal With CNN Deep Learning Regularization

机译:基于变分的混合噪声去除CNN深度学习正规化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the traditional model based variational methods and deep learning based algorithms are naturally integrated to address mixed noise removal, specially for Gaussian mixture noise and Gaussian-impulse noise removal problem. To be different from single type noise (e.g. Gaussian) removal, it is a challenge problem to accurately discriminate noise types and levels for each pixel. We propose a variational method to iteratively estimate the noise parameters, and then the algorithm can automatically classify the noise according to the different statistical parameters. The proposed variational problem can be separated into regularization, synthesis, parameters estimation and noise classification four steps with the operator splitting scheme. Each step is related to an optimization subproblem. To enforce the regularization, the deep learning method is employed to learn the natural images prior. Compared with some model based regularizations, the CNN regularizer can significantly improve the quality of the restored images. Compared with some learning based methods, the synthesis step can produce better reconstructions by analyzing the types and levels of the recognized noise. In our method, the convolution neutral network (CNN) can be regarded as an operator which associated to a variational functional. From this viewpoint, the proposed method can be extended to many image reconstruction and inverse problems. Numerical experiments in the paper show that our method can achieve some state-of-the-art results for Gaussian mixture noise and Gaussian-impulse noise removal.
机译:在本文中,基于模型的基于模型的变分方法和基于深度学习的算法是自然集成的,以解决混合噪声去除,特别是高斯混合噪声和高斯 - 脉冲噪声消除问题。与单型噪声(例如高斯)移除不同,这是一种挑战问题,可以准确地区分每个像素的噪声类型和水平。我们提出了一种变分方法来迭代地估计噪声参数,然后该算法可以根据不同的统计参数自动对噪声进行分类。所提出的变分问题可以分成正则化,合成,参数估计和噪声分类与操作员分割方案进行四个步骤。每个步骤都与优化子问题有关。为了实施正规化,采用深度学习方法来在之前学习自然图像。与某些模型的正规化相比,CNN规范器可以显着提高恢复图像的质量。与一些基于学习的方法相比,合成步骤可以通过分析所公认的噪声的类型和水平来产生更好的重建。在我们的方法中,卷积中性网络(CNN)可以被视为与变分功能相关联的操作员。从这个观点来看,所提出的方法可以扩展到许多图像重建和逆问题。论文中的数值实验表明,我们的方法可以为高斯混合噪声和高斯脉冲噪声去除来实现一些最先进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号