首页> 外文期刊>IEEE Transactions on Image Processing >Dynamic Random Walk for Superpixel Segmentation
【24h】

Dynamic Random Walk for Superpixel Segmentation

机译:用于Superpixel分割的动态随机散步

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel random walk model, called Dynamic Random Walk (DRW), which adds a new type of dynamic node to the original RW model and reduces redundant calculation by limiting the walk range. To solve the seed-lacking problem of the proposed DRW, we redefine the energy function of the original RW and use the first arrival probability among each node pair to avoid the interference for each partition. Relaxation of our DRW is performed with the help of a greedy strategy and the Weighted Random Walk Entropy(WRWE) that uses the gradient feature to approximate the stationary distribution. The proposed DRW not only can enhance the boundary adherence but also can run with linear time complexity. To extend our DRW for superpixel segmentation, a seed initialization strategy is proposed. It can evenly distribute seeds in both 2D and 3D space and generate superpixels in only one iteration. The experimental results demonstrate that our DRW is faster than existing RW models and better than the state-of-the-art superpixel segmentation algorithms with respect to both efficiency and segmentation effects.
机译:在本文中,我们提出了一种新颖的随机步道模型,称为动态随机步行(DRW),其将新类型的动态节点添加到原始RW模型,并通过限制步行范围来减少冗余计算。为了解决所提出的DRW的种子问题,我们重新定义了原始RW的能量函数,并使用每个节点对之间的第一到达概率来避免每个分区的干扰。在贪婪的策略和加权随机步行熵(WRWE)的帮助下进行DRW的放松,它使用梯度特征来近似静止分布。所提出的DRW不仅可以增强边界依从性,而且可以通过线性时间复杂度来运行。要扩展我们的Superpixel分割的DRW,提出了种子初始化策略。它可以均匀地在2D和3D空间中分布种子,并仅在一次迭代中产生超像素。实验结果表明,我们的DRW比现有的RW模型更快,而且比效率和分割效果更好地优于最先进的SuperPixel分段算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号