首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Adaptive Nonlocal Random Walks for Image Superpixel Segmentation
【24h】

Adaptive Nonlocal Random Walks for Image Superpixel Segmentation

机译:用于图像超像素分割的自适应非函数随机散步

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel superpixel segmentation method using an adaptive nonlocal random walk (ANRW) algorithm. There are three main steps in our image superpixel segmentation algorithm. Our method is based on the random walk model, in which the seed points are produced to generate the initial superpixels by a gradient-based method in the first step. In the second step, the ANRW is proposed to get the initial superpixels by adjusting the NRW to obtain a better image and superpixel segmentation. In the last step, these small superpixels are merged to get the final regular and compact superpixels. The experimental results demonstrate that our method achieves a better superpixel performance than the state-of-the-art methods. Our source code will be available at: http://github.com/shenjianbing/ANRW.
机译:在本文中,我们提出了一种使用自适应非局部随机步行(ANRW)算法的新型超顶素分割方法。我们的图像Superpixel分割算法中有三个主要步骤。我们的方法基于随机步道模型,其中产生种子点以在第一步中通过基于梯度的方法产生初始超像素。在第二步骤中,提出ANRW通过调整NRW来获得初始超像素以获得更好的图像和超顶链分割。在最后一步中,这些小型超像素合并以获得最终常规和紧凑的超像素。实验结果表明,我们的方法达到了比最先进的方法更好的超像素性能。我们的源代码可用于:http://github.com/shenjianbing/anrw。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号