首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery
【24h】

Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery

机译:极化SAR图像估算北方森林冠和茎水分及生物量。

获取原文
获取原文并翻译 | 示例

摘要

Characterization of boreal forests in ecosystem models requires temporal and spatial distributions of water content and biomass over local and regional scales. The authors report on the use of a semi-empirical algorithm for deriving these parameters from polarimetric synthetic aperture radar (SAR) measurements. The algorithm is based on a two layer radar backscatter model that stratifies the forest canopy into crown and stem layers and separates the structural and biometric attributes of forest stands. The structural parameters are estimated by training the model with SAR image data over dominant coniferous and deciduous stands in the boreal forest such as jack pine, black spruce, and aspen. The algorithm is then applied on AIRSAR images collected during the Boreal Ecosystem Atmospheric Study (BOREAS) over the boreal forest of Canada. The results are verified using biometry measurements during BOREAS-intensive field campaigns. Field data relating the water content of tree components to dry biomass are used to modify the coefficients of the algorithm for crown and stem biomass. The algorithm was then applied over the entire image generating biomass maps. A set of 18 test sites within the imaged area was used to assess the accuracy of the biomass maps. The accuracy of biomass estimation is also investigated by choosing different combinations of polarization and frequency channels of the AIRSAR system. It is shown that polarimetric data from P-band and L-band channels provide similar accuracy for estimating the above-ground biomass for boreal forest types. In general, the use of P-band channels can provide better estimates of stem biomass, while L-band channels can estimate the crown biomass more accurately.
机译:在生态系统模型中表征北方森林需要在地方和区域范围内水和生物量的时空分布。作者报告了使用半经验算法从极化合成孔径雷达(SAR)测量中得出这些参数的情况。该算法基于两层雷达反向散射模型,该模型将森林冠层分为冠层和茎层,并将林分的结构和生物特征分开。通过使用SAR图像数据训练模型来估计结构参数,这些模型是在北方森林(如杰克松,黑云杉和白杨)的主要针叶和落叶林上进行的。然后将该算法应用于在加拿大北方森林上进行的北方生态系统大气研究(BOREAS)期间收集的AIRSAR图像。在BOREAS密集的野外活动期间,使用生物特征测量来验证结果。将树木成分的水分与干燥生物量相关的现场数据用于修改冠状和茎状生物量算法的系数。然后将该算法应用于整个图像生成生物量图。成像区域内的一组18个测试点用于评估生物量图的准确性。还可以通过选择AIRSAR系统的极化和频率信道的不同组合来研究生物量估算的准确性。结果表明,来自P波段和L波段通道的极化数据为估算北方森林类型的地上生物量提供了相似的精度。通常,使用P波段通道可以更好地估算茎生物量,而L波段通道可以更准确地估算冠生物量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号