首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Comparing Statistical and Neural Network Methods Applied to Very High Resolution Satellite Images Showing Changes in Man-Made Structures at Rocky Flats
【24h】

Comparing Statistical and Neural Network Methods Applied to Very High Resolution Satellite Images Showing Changes in Man-Made Structures at Rocky Flats

机译:比较统计和神经网络方法,将其应用于显示岩层人为结构变化的超高分辨率卫星图像

获取原文
获取原文并翻译 | 示例

摘要

Parametric and nonparametric approaches to evaluate land-cover change detection using very high resolution (VHR) satellite imagery are applied to the analysis of the demolition of the Rocky Flats nuclear weapons facility located near Denver, CO. Both maximum-likelihood and neural network classifiers are used to validate a new parallel architecture which improves the accuracy when applied to VHR satellite imagery for the study of land-cover change between sequential satellite acquisitions. An enhancement of about 14% was found between the single-step classification and the new parallel architecture, confirming the advantage and the robust improvement obtained with this architecture regardless of the classification algorithm used. In this paper, we demonstrate and document the demolition and removal of hundreds of buildings taken down to bare soil between 2003 and 2005 at the Rocky Flats site.
机译:使用超高分辨率(VHR)卫星图像评估土地覆盖变化检测的参数和非参数方法,被用于分析位于科罗拉多州丹佛附近的洛矶平原核武器设施的拆除。最大似然法和神经网络分类器都是用于验证一种新的并行体系结构,该体系结构应用于VHR卫星图像以研究相继获取的卫星之间的土地覆盖变化时,可以提高准确性。在单步分类和新的并行体系结构之间发现了大约14%的增强,这证实了使用此体系结构所获得的优势和强大的改进,而与所使用的分类算法无关。在本文中,我们演示并记录了Rocky Flats站点在2003年至2005年之间拆除和清除的数百栋被拆除为裸土的建筑物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号