首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Operational Performance of an Automatic Preliminary Spectral Rule-Based Decision-Tree Classifier of Spaceborne Very High Resolution Optical Images
【24h】

Operational Performance of an Automatic Preliminary Spectral Rule-Based Decision-Tree Classifier of Spaceborne Very High Resolution Optical Images

机译:星载超高分辨率光学图像基于光谱的自动初步决策树分类器的运行性能

获取原文
获取原文并翻译 | 示例

摘要

In the last 20 years, the number of spaceborne very high resolution (VHR) optical imaging sensors and the use of satellite VHR optical images have continued to increase both in terms of quantity and quality of data. This has driven the need for automating quantitative analysis of spaceborne VHR optical imagery. Unfortunately, existing remote sensing image understanding systems (RS-IUSs) score poorly in operational contexts. In recent years, to overcome operational drawbacks of existing RS-IUSs, an original two-stage stratified hierarchical RS-IUS architecture has been proposed by Shackelford and Davis. More recently, an operational automatic pixel-based near-real-time four-band IKONOS-like spectral rule-based decision-tree classifier (ISRC) has been downscaled from an original seven-band Landsat-like SRC (LSRC). The following is true for ISRC: 1) It is suitable for mapping spaceborne VHR optical imagery radiometrically calibrated into top-of-atmosphere or surface reflectance values, and 2) it is eligible for use as the pixel-based preliminary classification first stage of a Shackelford and Davis two-stage stratified hierarchical RS-IUS architecture. Given the ISRC “full degree” of automation, which cannot be surpassed, and ISRC computation time, which is near real time, this paper provides a quantitative assessment of ISRC accuracy and robustness to changes in the input data set consisting of 14 multisource spaceborne images of agricultural landscapes selected across the European Union. The collected experimental results show that, first, in a dichotomous vegetationonvegetation classification of four synthesized VHR images at regional scale, ISRC, in comparison with LSRC, provides a vegetation detection accuracy ranging from 76% to 97%, rising to about 99% if pixels featuring a low leaf area index are not considered in the comparison. Second, in the generation of a binary vegetation mask from ten panchromatic-sharpened QuickBird-2 and IKONOS-2 imag-n-nes, the operational performance measurement of ISRC is superior to that of an ordinary normalized difference vegetation index thresholding technique. Finally, the second-stage automatic stratified texture-based separation of low-texture annual cropland or herbaceous range land (land cover class AC/HR) from high-texture forest or woodland (land cover class F/W) is performed in the discrete, finite, and symbolic ISRC map domain in place of the ordinary continuous varying, subsymbolic, and multichannel texture feature domain. To conclude, this paper demonstrates that the automatic ISRC is eligible for use in operational VHR satellite-based measurement systems such as those envisaged under the ongoing Global Earth Observation System of Systems (GEOSS) and Global Monitoring for the Environment and Security (GMES) international programs.
机译:在过去的20年中,星载超高分辨率(VHR)光学成像传感器的数量以及卫星VHR光学图像的使用在数据数量和质量方面都在持续增长。这推动了对星载VHR光学图像进行自动化定量分析的需求。不幸的是,现有的遥感图像理解系统(RS-IUS)在操作环境中得分很差。近年来,为克服现有RS-IUS的操作缺陷,Shackelford和Davis提出了一种原始的两阶段分层式分层RS-IUS体系结构。最近,已经从原始的七波段类似Landsat的SRC(LSRC)缩减了可操作的基于像素的近实时四波段,类似IKONOS的基于频谱规则的决策树分类器(ISRC)的规模。对于ISRC,以下条件是正确的:1)适用于将以辐射计校准的星载VHR光学图像映射到大气层顶部或表面反射率值,以及2)适合用作基于像素的初步分类的第一阶段。 Shackelford和Davis两阶段分层分层的RS-IUS体系结构。鉴于ISRC的“自动化程度”是无法超越的,ISRC的计算时间几乎是实时的,因此本文对ISRC的准确性和鲁棒性进行了定量评估,以评估由14个多源星载图像组成的输入数据集的变化整个欧盟选择的农业景观。收集到的实验结果表明,首先,在区域尺度上的四个合成的VHR图像的二分植被/非植被分类中,与RCRC相比,ISRC提供的植被检测精度为76%至97%,提高到大约99%如果在比较中不考虑具有低叶面积索引的像素。其次,在由十个全色锐化的QuickBird-2和IKONOS-2 imag-n-nes生成二元植被遮罩中,ISRC的操作性能测量优于常规归一化差异植被指数阈值技术。最后,在离散状态下,对低纹理的一年生农田或草场土地(土地覆盖类别AC / HR)与高纹理的森林或林地(土地覆盖类别F / W)进行第二阶段自动分层基于纹理的分离,有限和符号ISRC映射域来代替普通的连续变化,亚符号和多通道纹理特征域。总而言之,本文证明了自动ISRC有资格在基于VHR卫星的业务测量系统中使用,例如正在进行的全球地球观测系统系统(GEOSS)和全球环境与安全监控(GMES)程式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号