首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Automatic Spectral Rule-Based Preliminary Mapping of Calibrated Landsat TM and ETM+ Images
【24h】

Automatic Spectral Rule-Based Preliminary Mapping of Calibrated Landsat TM and ETM+ Images

机译:基于光谱自动规则的校准Landsat TM和ETM +图像初步映射

获取原文
获取原文并翻译 | 示例

摘要

Based on purely spectral-domain prior knowledge taken from the remote sensing (RS) literature, an original spectral (fuzzy) rule-based per-pixel classifier is proposed. Requiring no training and supervision to run, the proposed spectral rule-based system is suitable for the preliminary classification (primal sketch, in the Marr sense) of Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus images calibrated into planetary reflectance (albedo) and at-satellite temperature. The classification system consists of a modular hierarchical top-down processing structure, which is adaptive to image statistics, computationally efficient, and easy to modify, augment, or scale to other sensors' spectral properties, like those of the Advanced Spaceborne Thermal Emission and Reflection Radiometer and of the Satellite Pour l'Observation de la Terre (SPOT-4 and -5). As output, the proposed system detects a set of meaningful and reliable fuzzy spectral layers (strata) consistent (in terms of one-to-one or many-to-one relationships) with land cover classes found in levels I and II of the U.S. Geological Survey classification scheme. Although kernel spectral categories (e.g., strong vegetation) are detected without requiring any reference sample, their symbolic meaning is intermediate between those (low) of clusters and segments and those (high) of land cover classes (e.g., forest). This means that the application domain of the kernel spectral strata is by no means alternative to RS data clustering, image segmentation, and land cover classification. Rather, prior knowledge-based kernel spectral categories are naturally suitable for driving stratified application-specific classification, clustering, or segmentation of RS imagery that could involve training and supervision. The efficacy and robustness of the proposed rule-based system are tested in two operational RS image classification problems.
机译:基于从遥感(RS)文献中获得的纯光谱域先验知识,提出了一种基于原始光谱(模糊)规则的每像素分类器。无需运行训练和监督,该基于光谱规则的系统适用于校准为行星反射率的Landsat-5 Thematic Mapper和Landsat-7 Enhanced Thematic Mapper Plus图像的初步分类(按Marr的初衷)。反照率)和卫星温度。分类系统由模块化的分层自上而下的处理结构组成,该结构适用于图像统计,计算效率高,并且易于修改,扩展或缩放为其他传感器的光谱特性,例如高级星载热发射和反射的那些辐射计和卫星地面观测站(SPOT-4和-5)。作为输出,建议的系统检测到一组有意义且可靠的模糊光谱层(地层),这些层与美国I级和II级土地覆盖类别一致(就一对一或多对一关系而言)地质调查分类方案。尽管无需任何参考样本即可检测到核频谱类别(例如强植被),但其象征意义介于群集和片段的那些(低)和土地覆盖类别(例如森林)的(高)之间。这意味着内核光谱层的应用领域绝不能替代RS数据聚类,图像分割和土地覆盖分类。相反,基于先验知识的核谱类别自然适合于驱动分层的特定于应用程序的分类,聚类或分割RS图像,这可能涉及培训和监督。在两个可操作的RS图像分类问题中测试了所提出的基于规则的系统的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号