首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Fuzzification of a Crisp Near-Real-Time Operational Automatic Spectral-Rule-Based Decision-Tree Preliminary Classifier of Multisource Multispectral Remotely Sensed Images
【24h】

Fuzzification of a Crisp Near-Real-Time Operational Automatic Spectral-Rule-Based Decision-Tree Preliminary Classifier of Multisource Multispectral Remotely Sensed Images

机译:基于多源多光谱遥感图像的基于近实时实时自动谱规则的决策树分类器的模糊化

获取原文
获取原文并翻译 | 示例

摘要

Proposed in recent literature, a novel two-stage stratified hierarchical hybrid remote-sensing image understanding system (RS-IUS) architecture comprises the following: 1) a first-stage pixel-based application-independent top-down (physical-model-driven and prior-knowledge-based) preliminary classifier and 2) a second-stage battery of stratified hierarchical context-sensitive application-dependent modules for class-specific feature extraction and classification. The first-stage preliminary classifier is implemented as an operational automatic near-real-time per-pixel multisource multiresolution application-independent spectral-rule-based decision-tree classifier (SRC). To the best of the author''s knowledge, SRC provides the first operational example of an automatic multisensor multiresolution Earth-observation (EO) system of systems envisaged under ongoing international research programs such as the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring for the Environment and Security (GMES). For the sake of simplicity, the original SRC formulation adopts crisp (hard) membership functions unsuitable for dealing with component cover classes of mixed pixels (class mixture). In this paper, the crisp (hierarchical) SRC first stage of a two-stage hybrid RS-IUS is replaced by a fuzzy (horizontal) SRC. In operational terms, a relative comparison of the fuzzy SRC against its crisp counterpart reveals that the former features the following: 1) the same degree of automation which cannot be surpassed, i.e., they are both ȁC;fully automaticȁD;; 2) a superior map information/knowledge representation where component cover classes of mixed pixels are modeled; 3) the same robustness to changes in the input multispectral imagery acquired across time, space, and sensors; 4) a superior maintainability/scalability/reusability guaranteed by an internal horizontal (flat) modular structure independent of hierarchy; and 5) a computation time increased -n-nby 30% in a single-process single-thread implementation. This computation overload would reduce to zero in a single-process multithread implementation. In line with theory, the conclusion of this work is that the operational qualities of the fuzzy and crisp SRCs differ, but both SRCs are suitable for the development of operational automatic near-real-time multisensor satellite-based measurement systems such as those conceived as a visionary goal by the ongoing GEOSS and GMES research initiatives.
机译:在最近的文献中提出了一种新颖的两阶段分层分层混合遥感图像理解系统(RS-IUS)架构,包括以下内容:1)第一阶段基于像素的与应用无关的自顶向下(物理模型驱动)以及基于先验知识的)初步分类器; 2)第二阶段的分层分层上下文相关应用相关模块,用于特定于类的特征提取和分类。第一阶段初步分类器实现为基于操作的自动近实时每像素多源多分辨率独立于应用的基于谱规则的决策树分类器(SRC)。就作者所知,SRC提供了第一个自动多传感器多分辨率地球观测(EO)系统的运行示例,该系统正在进行中的国际研究计划下设想,例如全球地球观测系统系统(GEOSS)和全球环境与安全监测(GMES)。为简单起见,原始SRC公式采用了不适合处理混合像素(混合类)的组件覆盖类别的明快(硬)隶属函数。在本文中,两阶段混合RS-IUS的清晰(分层)SRC第一阶段由模糊(水平)SRC代替。从操作上讲,模糊SRC与它的清晰对等的相对比较表明,前者具有以下特点:1)不能被超越的相同程度的自动化,即它们都是ȁC;全自动fullyD; 2)上级地图信息/知识表示,其中混合像素的组件覆盖类别被建模; 3)对跨时间,空间和传感器获取的输入多光谱图像的变化具有相同的鲁棒性; 4)通过独立于层次结构的内部水平(平面)模块化结构保证了出色的可维护性/可扩展性/可重用性; 5)在单进程单线程实现中,计算时间增加了-n-n%30%。在单进程多线程实现中,此计算过载将减少为零。根据理论,这项工作的结论是模糊和清晰的SRC的操作质量不同,但是两种SRC都适合开发可操作的近实时多传感器卫星自动测量系统,例如那些正在进行的GEOSS和GMES研究计划的远景目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号