首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
【24h】

Hyperspectral Image Classification Using Dictionary-Based Sparse Representation

机译:基于字典的稀疏表示的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

A new sparsity-based algorithm for the classification of hyperspectral imagery is proposed in this paper. The proposed algorithm relies on the observation that a hyperspectral pixel can be sparsely represented by a linear combination of a few training samples from a structured dictionary. The sparse representation of an unknown pixel is expressed as a sparse vector whose nonzero entries correspond to the weights of the selected training samples. The sparse vector is recovered by solving a sparsity-constrained optimization problem, and it can directly determine the class label of the test sample. Two different approaches are proposed to incorporate the contextual information into the sparse recovery optimization problem in order to improve the classification performance. In the first approach, an explicit smoothing constraint is imposed on the problem formulation by forcing the vector Laplacian of the reconstructed image to become zero. In this approach, the reconstructed pixel of interest has similar spectral characteristics to its four nearest neighbors. The second approach is via a joint sparsity model where hyperspectral pixels in a small neighborhood around the test pixel are simultaneously represented by linear combinations of a few common training samples, which are weighted with a different set of coefficients for each pixel. The proposed sparsity-based algorithm is applied to several real hyperspectral images for classification. Experimental results show that our algorithm outperforms the classical supervised classifier support vector machines in most cases.
机译:提出了一种基于稀疏性的高光谱图像分类算法。所提出的算法依赖于这样的观察,即高光谱像素可以稀疏地由结构化字典中的几个训练样本的线性组合表示。未知像素的稀疏表示表示为稀疏矢量,其非零项对应于所选训练样本的权重。通过解决稀疏约束优化问题来恢复稀疏向量,它可以直接确定测试样本的类别标签。提出了两种不同的方法来将上下文信息合并到稀疏恢复优化问题中,以提高分类性能。在第一种方法中,通过迫使重构图像的向量Laplacian变为零,对问题表达施加了明确的平滑约束。用这种方法,感兴趣的重建像素具有与其四个最近邻居相似的光谱特性。第二种方法是通过联合稀疏模型​​,其中通过几个常见训练样本的线性组合同时表示测试像素周围小邻域中的高光谱像素,并对每个像素使用不同的系数集对其进行加权。提出的基于稀疏性的算法被应用于几个真实的高光谱图像进行分类。实验结果表明,在大多数情况下,我们的算法优于经典的监督分类器支持向量机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号