首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images
【24h】

Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images

机译:高光谱图像去散的图正则化低秩表示

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image destriping is a challenging and promising theme in remote sensing. Striping noise is a ubiquitous phenomenon in hyperspectral imagery, which may severely degrade the visual quality. A variety of methods have been proposed to effectively alleviate the effects of the striping noise. However, most of them fail to take full advantage of the high spectral correlation between the observation subimages in distinct bands and consider the local manifold structure of the hyperspectral data space. In order to remedy this drawback, in this paper, a novel graph-regularized low-rank representation (LRR) destriping algorithm is proposed by incorporating the LRR technique. To obtain desired destriping performance, two sides of performing destriping are included: 1) To exploit the high spectral correlation between the observation subimages in distinct bands, the technique of LRR is first utilized for destriping, and 2) to preserve the intrinsic local structure of the original hyperspectral data, the graph regularizer is incorporated in the objective function. The experimental results and quantitative analysis demonstrate that the proposed method can both remove striping noise and achieve cleaner and higher contrast reconstructed results.
机译:高光谱图像去条纹技术是遥感领域一个充满挑战和希望的主题。条纹噪声是高光谱图像中普遍存在的现象,可能会严重降低视觉质量。已经提出了各种方法来有效地减轻条带噪声的影响。然而,它们中的大多数不能充分利用不同频带中的观测子图像之间的高光谱相关性,而无法考虑高光谱数据空间的局部流形结构。为了弥补这一缺陷,本文提出了一种新的图规则化低秩表示(LRR)去条纹算法,该算法结合了LRR技术。为了获得理想的去条纹性能,包括执行去条纹的两个方面:1)为了利用不同频带中的观测子图像之间的高光谱相关性,首先使用LRR技术进行去条纹,以及2)保留去条纹的固有局部结构。在原始的高光谱数据中,将图形正则器合并到目标函数中。实验结果和定量分析表明,该方法既可以消除条纹噪声,又可以获得更清晰,对比度更高的重建结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号