首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Wavelet-Domain Low-Rank/Group-Sparse Destriping for Hyperspectral Imagery
【24h】

Wavelet-Domain Low-Rank/Group-Sparse Destriping for Hyperspectral Imagery

机译:高光谱图像的小波域低秩/组稀疏去斑

获取原文
获取原文并翻译 | 示例

摘要

Pushbroom acquisition of hyperspectral imagery is prone to striping artifacts in the along-track direction. A hyperspectral destriping algorithm is proposed such that the subbands of a 3-D wavelet transform most affected by pushbroom stripesnamely, those with spatially vertical orientationare the exclusive focus of destriping. The proposed method features an iterative image decomposition composed of a low-rank model for the stripes coupled with a group-sparse prior on the wavelet coefficients of the subbands in question. While low-rank stripe models have been widely used in the past, they typically have been deployed in conjunction with a total-variation prior on the image that is prone to oversmoothing and residual stripe artifacts. On the other hand, the proposed group-sparse prior not only captures the well-known sparse nature of wavelet coefficients but also capitalizes on their vertical clustering in the subbands in question. In addition, while many prior destriping methods are wavelet-based, they employ 2-D transforms band by band. In contrast, the proposed 3-D wavelet transform provides a greater concentration of stripe information into fewer wavelet coefficients, leading to more effective destriping. Experimental results on both synthetically striped imagery as well as real striped imagery from an actual hyperspectral sensor demonstrate superior image quality for the proposed method as compared with other state-of-the-art methods.
机译:推扫获取高光谱图像容易在沿轨道方向上剥离伪影。提出了一种高光谱去条纹算法,使得3-D小波变换的子带受推扫条纹的影响最大,即具有空间垂直方向的子带是去条纹的唯一重点。所提出的方法的特征在于迭代图像分解,该迭代图像分解包括针对所关注的子带的小波系数的,针对条纹的低秩模型以及先于组稀疏的条纹。尽管低阶条纹模型在过去已被广泛使用,但它们通常已与总变型一起部署,从而易于在图像上出现过度平滑和残留条纹伪影的情况。另一方面,提出的组稀疏先验不仅捕获了众所周知的小波系数的稀疏性质,而且利用了它们在相关子带中的垂直聚类。另外,尽管许多现有的去条纹方法是基于小波的,但是它们逐带采用2-D变换。相比之下,提出的3-D小波变换将条带信息的集中度提高到更少的小波系数中,从而导致更有效的去条纹。来自实际高光谱传感器的合成条纹图像和真实条纹图像的实验结果均表明,与其他最新方法相比,该方法的图像质量更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号