首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Wavelet-Based Sparse Reduced-Rank Regression for Hyperspectral Image Restoration
【24h】

Wavelet-Based Sparse Reduced-Rank Regression for Hyperspectral Image Restoration

机译:基于小波的稀疏降秩回归用于高光谱图像恢复

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a method called wavelet-based sparse reduced-rank regression (WSRRR) is proposed for hyperspectral image restoration. The method is based on minimizing a sparse regularization problem subject to an orthogonality constraint. A cyclic descent-type algorithm is derived for solving the minimization problem. For selecting the tuning parameters, we propose a method based on Stein's unbiased risk estimation. It is shown that the hyperspectral image can be restored using a few sparse components. The method is evaluated using signal-to-noise ratio and spectral angle distance for a simulated noisy data set and by classification accuracies for a real data set. Two different classifiers, namely, support vector machines and random forest, are used in this paper. The method is compared to other restoration methods, and it is shown that WSRRR outperforms them for the simulated noisy data set. It is also shown in the experiments on a real data set that WSRRR not only effectively removes noise but also maintains more fine features compared to other methods used. WSRRR also gives higher classification accuracies.
机译:本文提出了一种基于小波的稀疏降秩回归(WSRRR)方法来恢复高光谱图像。该方法基于最小化受正交性约束的稀疏正则化问题。推导了一种循环下降型算法来解决最小化问题。为了选择调整参数,我们提出了一种基于斯坦因的无偏风险估计的方法。结果表明,可以使用一些稀疏分量来恢复高光谱图像。对于模拟的噪声数据集,使用信噪比和频谱角距离,对真实数据集使用分类精度,对方法进行评估。本文使用了两种不同的分类器,即支持向量机和随机森林。将该方法与其他恢复方法进行了比较,结果表明,对于模拟的噪声数据集,WSRRR的性能优于它们。在真实数据集上的实验中还显示,与使用的其他方法相比,WSRRR不仅可以有效地去除噪声,而且还可以保持更精细的功能。 WSRRR还提供了更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号