首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Spectral–Spatial Classification of Hyperspectral Images via Spatial Translation-Invariant Wavelet-Based Sparse Representation
【24h】

Spectral–Spatial Classification of Hyperspectral Images via Spatial Translation-Invariant Wavelet-Based Sparse Representation

机译:基于空间平移不变小波稀疏表示的高光谱图像光谱空间分类

获取原文
获取原文并翻译 | 示例

摘要

For hyperspectral image (HSI) classification, it is challenging to adopt the methodology of sparse-representation-based classification. In this paper, we first propose an -minimization-based spectral–spatial classification method for HSIs via a spatial translation-invariant wavelet (STIW)-based sparse representation (STIW-SR), wherein both the spectrum dictionary and the analyzed signal are formed with STIW features. Due to the capability of a STIW to reduce both the observation noise and the spatial nonstationarity while maintaining the ideal spectra, which is proved with our signal–interference–noise spectrum model involved, it is expected that the pixels in the same class congregate in a lower dimensional subspace, and the separations among class-specific subspaces are enhanced, thus yielding a highly discriminative sparse representation. Then, we develop an approach to evaluate the sparsity recoverability of an -minimization on HSIs in a probabilistic framework. This approach takes into account not only the recovery probability under the given support length of the -norm solution but also the probability of the support length; consequently, it overcomes the inability of traditional mutual/cumulative coherence conditions to address high-coherence HSIs. This paper reveals that the higher sparsity recoverability of a STIW-SR leads to its higher classification accuracy and that the increasing coherence does not necessarily lead to a reduced sparsity recovery probability, and this paper verifies the connection between - and
机译:对于高光谱图像(HSI)分类,采用基于稀疏表示的分类方法具有挑战性。在本文中,我们首先通过基于空间平移不变小波(STIW)的稀疏表示(STIW-SR)提出了一种基于最小化的HSI频谱空间分类方法,其中频谱字典和被分析信号都形成了具有STIW功能。由于STIW能够在保持理想光谱的同时降低观测噪声和空间非平稳性,这一点已通过我们所涉及的信号-干扰-噪声光谱模型得到证明,因此可以预期,同一类别的像素会聚集在一个低维子空间,并且增强了类特定子空间之间的分隔,因此产生了高度区分性的稀疏表示。然后,我们开发了一种在概率框架中评估HSI最小化的稀疏性可恢复性的方法。这种方法不仅考虑了-norm解在给定支持长度下的恢复概率,还考虑了支持长度的概率。因此,它克服了传统的相互/累积一致性条件无法解决高一致性HSI的问题。本文揭示了STIW-SR的较高稀疏性可恢复性导致其较高的分类准确性,而增加的相干性并不一定会导致稀疏性恢复概率降低,并且本文验证了-和之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号