首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization
【24h】

A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization

机译:通过基于子空间的正则化的高光谱图像超分辨率的凸公式

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images that combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector total variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the nonquadratic and nonsmooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally “live” in a low-dimensional subspace and by tailoring the split augmented Lagrangian shrinkage algorithm (SALSA), which is an instance of the alternating direction method of multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state of the art, as illustrated in a series of experiments with simulated and real-life data.
机译:高光谱遥感图像(HSI)通常具有高光谱分辨率和低空间分辨率。相反,多光谱图像(MSI)通常具有较低的光谱和较高的空间分辨率。分别结合HSI和MSI的高光谱和高空间分辨率的图像推断问题是一个数据融合问题,由于从同一地理区域检索到的HSI和MSI的可用性不断提高,这已成为近期积极研究的焦点。我们将此问题表述为包含两个二次数据拟合项和边保留正则化函数的凸目标函数的最小化。数据拟合术语考虑了模糊,不同的分辨率和附加噪声。正则化器是向量总变化的一种形式,它促进了分段平滑的解决方案,其解决方案在高光谱波段上具有不连续性。下采样算子说明了不同的空间分辨率,正则化器的非二次性和非平滑性以及要估计的HSI的非常大的大小,这导致了一个困难的优化问题。我们通过利用HSI通常“生活”在低维子空间中的事实,并通过调整分割增广拉格朗日收缩算法(SALSA)(这是乘数交替方向方法(ADMM)的一个实例),来解决这些困难。通过方便的变量拆分可以解决此优化问题。还估计了分别与HSI和MSI采集过程相关联的空间模糊和频谱线性算符,并且我们获得了一种优于现有技术的有效算法,如一系列模拟和现实实验所示数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号