首页> 外文期刊>IEEE Transactions on Image Processing >Hyperspectral Image Super-Resolution via Subspace-Based Low Tensor Multi-Rank Regularization
【24h】

Hyperspectral Image Super-Resolution via Subspace-Based Low Tensor Multi-Rank Regularization

机译:通过基于子空间的低张量多秩正则化实现高光谱图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Recently, combining a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) into an HR-HSI has become a popular scheme to enhance the spatial resolution of HSI. We propose a novel subspace-based low tensor multi-rank regularization method for the fusion, which fully exploits the spectral correlations and non-local similarities in the HR-HSI. To make use of high spectral correlations, the HR-HSI is approximated by spectral subspace and coefficients. We first learn the spectral subspace from the LR-HSI via singular value decomposition, and then estimate the coefficients via the low tensor multi-rank prior. More specifically, based on the learned cluster structure in the HR-MSI, the patches in coefficients are grouped. We collect the coefficients in the same cluster into a three-dimensional tensor and impose the low tensor multi-rank prior on these collected tensors, which fully model the non-local self-similarities in the HR-HSI. The coefficients optimization is solved by the alternating direction method of multipliers. Experiments on two public HSI datasets demonstrate the advantages of our method.
机译:近来,将低空间分辨率的高光谱图像(LR-HSI)与高空间分辨率的多光谱图像(HR-MSI)组合成HR-HSI已经成为提高HSI的空间分辨率的流行方案。我们提出了一种新颖的基于子空间的低张量多秩正则化融合方法,该方法充分利用了HR-HSI中的频谱相关性和非局部相似性。为了利用高频谱相关性,可以通过频谱子空间和系数来近似HR-HSI。我们首先通过奇异值分解从LR-HSI学习光谱子空间,然后通过低张量多秩先验估计系数。更具体地,基于在HR-MSI中学习的聚类结构,系数中的补丁被分组。我们将相同聚类中的系数收集到三维张量中,并在这些收集的张量上施加低张量多秩,从而完全模拟了HR-HSI中的非局部自相似性。通过乘数的交替方向方法来解决系数优化。在两个公共HSI数据集上进行的实验证明了我们方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号