首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Wavelet Operators and Multiplicative Observation Models—Application to SAR Image Time-Series Analysis
【24h】

Wavelet Operators and Multiplicative Observation Models—Application to SAR Image Time-Series Analysis

机译:小波算子和乘性观测模型—在SAR图像时间序列分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper first provides statistical properties of wavelet operators when the observation model can be seen as the product of a deterministic piecewise regular function (signal) and a stationary random field (noise). This multiplicative observation model is analyzed in two standard frameworks by considering either: 1) a direct wavelet transform of the model; or 2) a log-transform of the model prior to wavelet decomposition. The paper shows that, in Framework 1, wavelet coefficients of the time series are affected by intricate correlation structures which blur signal singularities. Framework 2 is shown to be associated with a multiplicative (or geometric) wavelet transform, and the multiplicative interactions between wavelets and the model highlight both sparsity of signal changes near singularities (dominant coefficients) and decorrelation of speckle wavelet coefficients. This paper then derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and relevant framework for the analysis of smooth earth fields observed in the presence of speckle. From this analysis, this paper proposes a fast-and-concise geometric-wavelet-based method for joint change detection and regularization of synthetic aperture radar image time series. In this method, geometric wavelet details are first computed with respect to the temporal axis in order to derive generalized-ratio change images from the time series. The changes are then enhanced, and speckle is attenuated by using spatial block sigmoid shrinkage. Finally, a regularized time series is reconstructed from the sigmoid shrunken change images. Some applications highlight relevancy of the method for the analysis of SENTINEL-1A and TerraSAR-X image time series over Chamonix Mont Blanc.
机译:当观察模型可以看作确定性分段正则函数(信号)和平稳随机场(噪声)的乘积时,本文首先提供小波算子的统计性质。在以下两个标准框架中,通过考虑以下任一因素来分析此乘法观测模型:1)模型的直接小波变换;或2)小波分解之前模型的对数变换。本文表明,在框架1中,时间序列的小波系数受复杂的相关结构的影响,这些结构模糊了信号的奇异性。框架2被证明与乘法(或几何)小波变换相关,并且小波和模型之间的乘法相互作用既突出了信号变化的稀疏性(主要系数)也接近散斑小波系数。然后,本文得出结论,对于合成孔径雷达数据的时间序列,几何小波代表了一种更为直观和相关的框架,用于分析在斑点存在下观测到的光滑地球场。通过这种分析,本文提出了一种基于快速和简洁的几何小波的方法,用于合成孔径雷达图像时间序列的联合变化检测和正则化。在这种方法中,首先相对于时间轴计算几何小波细节,以便从时间序列中得出广义比率变化图像。然后,通过使用空间块S型收缩来增强这些变化并减少斑点。最后,从乙状结肠缩小的变化图像中重建一个正则化的时间序列。一些应用程序强调了夏蒙尼勃朗峰上SENTINEL-1A和TerraSAR-X图像时间序列分析方法的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号